Matematică, întrebare adresată de rabdare00, 8 ani în urmă

Calculati derivatele functiei intr-un punct.

f(x)=2x+1
X0=3​

Răspunsuri la întrebare

Răspuns de lucianglont666
1

Răspuns:

f derivabilă în x0=3 ⇔f'd(3)=f's(3)

1.f'd(3)=\lim_{x\to 3+} \frac{f(x)-f(3)}{x-3}=\lim_{x\to 3+} \frac{2x+1-7}{x-3}= \lim_{x \to 3+} \frac{2x-6}{x-3} = \lim_{x \to 3+} \frac{2(x-3)}{x-3} = 2

2.f's(3)=\lim_{x \to 3-}  \frac{f(x)-f(3)}{x-3}= \lim_{x \to 3-} \frac{2x+1-7}{x-3}=2

Din 1 și 2 rezultă că f este derivabilă în x0=3

==lucianglont666==

Mult succes!


rabdare00: cum s-a ajuns la 2x+1-7?
lucianglont666: f(x)=2x+1 și f(3)=7
Alte întrebări interesante