Matematică, întrebare adresată de ainstain17, 8 ani în urmă

Calculati suma inverselor numerelor a b c unde:
a \sqrt{8}
b \sqrt{18}
c \sqrt{72}
cu explicatie va rogg​

Răspunsuri la întrebare

Răspuns de leruaeli
12

Răspuns:

Explicație pas cu pas:

√8=2√2

√18=3√2

√72=6√2

1/2√2 +1/3√2 +1/6√2 =

√2/4 +√2/6 +√2/12 =

(3√2+2√2+√2) /12 =

6√2 /12=

=√2 /2


ainstain17: ce e cu / asta?
ancahaldan27: Inseamnă supra ( fracție)
ancahaldan27: Uite-te la celălalt răspuns, să vezi diferența.
ainstain17: ok
Răspuns de ancahaldan27
12

Răspuns:

\frac{\sqrt{2}}{2}

Explicație pas cu pas:

Inversul unui numai a reprezinta \frac{1}{a}

\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =\\\\\frac{1}{\sqrt{8} } + \frac{1}{\sqrt{18} } = \frac{1}{\sqrt{72} } = \\\\

Descompunem radicalii de la numitor:

\sqrt{8} = \sqrt{2^{3} = 2\sqrt{2} \\\\

\sqrt{18} = \sqrt{3^{2}*2 = 3\sqrt{2} \\\\

\sqrt{72} = \sqrt{3^{2}*2^{3} = 6\sqrt{2} \\\\

\frac{1}{2\sqrt{2} } + \frac{1}{3\sqrt{2} }  + \frac{1}{6\sqrt{2} } =

Rationalizam fiecare fractie cu \sqrt{2}

\frac{\sqrt{2}}{2*2} + \frac{\sqrt{2}}{3*2} + \frac{\sqrt{2}}{6*2} =\frac{\sqrt{2}}{4}  + \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{12} =

Aducem la acelasi numitor comun 12

\frac{3\sqrt{2} }{4*3}  + \frac{2\sqrt{2} }{6*2} + \frac{\sqrt{2} }{12} = \\\\\frac{3\sqrt{2} }{12}  + \frac{2\sqrt{2} }{12} + \frac{\sqrt{2} }{12} = \\\\\frac{3\sqrt{2}+2\sqrt{2}+\sqrt{2} }{12} = \\\\\frac{6\sqrt{2} }{12} = \\\\\frac{\sqrt{2} }{2} = \\

Alte întrebări interesante