Matematică, întrebare adresată de BiancaBii, 9 ani în urmă

Care este soluția sistemului:  \left \{ {{  2^{x} 5^{y}=250  } \atop { 2^{y} 5^{x}=40  }} \right.

Răspunsuri la întrebare

Răspuns de AcelOm
1
2^x\cdot5^y\cdot2^y\cdot5^x=250\cdot40
10^x\cdot10^y=10000
10^{x+y}=10000
x+y=4

2^x\mid250
2\mid250,~dar~2^2\nmid250
\Rightarrow2^x=2\Rightarrow x=1
\Rightarrow y=3
2^1\cdot5^3=2\cdot125=250
2^3\cdot5^1=8\cdot5=40

\boxed{x=1,~y=3}
Răspuns de Rayzen
3
\left\{ \begin{array}{c} 2^x\cdot 5^y = 250 \\ 2^y\cdot 5^x = 40 \end{array} \right | \\  \\ \boxed{1} \quad 2^x = \dfrac{250}{5^y} \Rightarrow x = log_\big2 \dfrac{250}{5^y} \Rightarrow x = log_\big2250 - log_\big2 5^y \Rightarrow \\  \Rightarrow x  = log_\big2250 - ylog_\big2 5 \\  \\ \boxed{2} \quad 5^x = \dfrac{40}{2^y} \Rightarrow x = log_\big5 \dfrac{40}{2^y} \Rightarrow x = log_\big5 40 - log_\big5 2^y \Rightarrow \\ \Rightarrow  x = log_\big5 40 - ylog_\big5 2


\\  $Egalam: \\ \\ $  log_\big2250 - ylog_\big2 5=log_\big5 40 - ylog_\big5 2  \Rightarrow \\ \\ \Rightarrow ylog_\big5 2 - ylog_\big25 = log_\big5 40 -  log_\big2250 \Rightarrow \\ \\ \Rightarrow y \cdot(log_\big5 2 - log_\big 2 5) = log_\big 5 40 - log_\big 2 250 \Rightarrow  \\  \\ \Rightarrow y = \dfrac{ log_\big 5 40 - log_\big 2 250}{log_\big5 2 - log_\big 2 5} \Rightarrow y = \dfrac{log_\big5 2^3\cdot 5- log_\big 2 5^3\cdot 2}{log_\big5 2 - log_\big 2 5} \Rightarrow  \\  \\


 \Rightarrow y = \dfrac{log_\big5 2^3+ log_\big 55- (log_\big 2 5^3+log_\big 2 2)}{log_\big5 2 - log_\big 2 5}  \Rightarrow \\ \\ \Rightarrow y =\dfrac{3log_\big5 2+ log_\big 55- 3log_\big 2 5-log_\big 2 2}{log_\big5 2 - log_\big 2 5} \Rightarrow \\ \\ \Rightarrow y =\dfrac{3\cdot(log_\big5 2 - log_\big 2 5) + log_\big 5 5 - log_\big2 2}{log_\big5 2 - log_\big 2 5} \Rightarrow


 \\  \\ \Rightarrow  y=\dfrac{3\cdot(log_\big5 2 - log_\big 2 5) + 1 - 1}{log_\big5 2 - log_\big 2 5}  \Rightarrow y=\dfrac{3\cdot(log_\big5 2 - log_\big 2 5)}{log_\big5 2 - log_\big 2 5}   \Rightarrow \boxed{y=3} \\  \\ y=3 \Rightarrow 2^x\cdot 5^3 = 250 \Rightarrow 2^x\cdot 5^3 = 125\cdot 2  \Rightarrow 2^x \cdot 5^3 = 5^3\cdot 2 \Rightarrow  \\  \\ \Rightarrow2^x= \dfrac{5^3\cdot 2}{5^3} \Rightarrow 2^x = 2 \Rightarrow \boxed{x = 1}

\Rightarrow \boxed{(x,y) = (1,3)}
Alte întrebări interesante