Cât este rezultatul?
Anexe:

GreenEyes71:
Apoi, ai scos de sub radical x², dar ai scris greșit x. Atenție mare de tot, pentru așa greșeală poți pierde puncte multe la teze, la teste, sau chiar la bacalaureat. Varianta corectă este √x² = | x |, adică modul de x. Pentru x care tinde la minus infinit √x² = | x | = --x (minus x), deci rezolvarea cu +x ar putea duce la alt rezultat. Mare, mare atenție la această greșeală !
Răspunsuri la întrebare
Răspuns de
2
Salut,
Uite soluția corectă:
![\lim\limits_{x\to -\infty}[x(\sqrt{9x^2+5}+3x)].\ Not\breve{a}m\ x=-p,\ deci\ p\to+\infty.\ Limita\ devine:\\\\\lim\limits_{p\to +\infty}\left[-p\left(\sqrt{9p^2+5}-3p\right)\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{\left(\sqrt{9p^2+5}-3p\right)\left(\sqrt{9p^2+5}+3p\right)}{\sqrt{9p^2+5}+3p}\right]=\\\\=\lim\limits_{p\to +\infty}\left[-p\dfrac{9p^2+5-9p^2}{\sqrt{9p^2+5}+3p}\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{\sqrt{p^2\cdot\left(9+\dfrac{5}{p^2}\right)}+3p}\right]=\\\\\\=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{|p|\sqrt{9+\dfrac{5}{p^2}}+3p}\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{p\sqrt{9+\dfrac{5}{p^2}}+3p}\right]=\\\\\\=\lim\limits_{p\to +\infty}\left[\dfrac{-5}{\sqrt{9+\dfrac{5}{p^2}}+3}\right]=\dfrac{-5}{\sqrt9+3}=-\dfrac{5}6. \lim\limits_{x\to -\infty}[x(\sqrt{9x^2+5}+3x)].\ Not\breve{a}m\ x=-p,\ deci\ p\to+\infty.\ Limita\ devine:\\\\\lim\limits_{p\to +\infty}\left[-p\left(\sqrt{9p^2+5}-3p\right)\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{\left(\sqrt{9p^2+5}-3p\right)\left(\sqrt{9p^2+5}+3p\right)}{\sqrt{9p^2+5}+3p}\right]=\\\\=\lim\limits_{p\to +\infty}\left[-p\dfrac{9p^2+5-9p^2}{\sqrt{9p^2+5}+3p}\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{\sqrt{p^2\cdot\left(9+\dfrac{5}{p^2}\right)}+3p}\right]=\\\\\\=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{|p|\sqrt{9+\dfrac{5}{p^2}}+3p}\right]=\lim\limits_{p\to +\infty}\left[-p\dfrac{5}{p\sqrt{9+\dfrac{5}{p^2}}+3p}\right]=\\\\\\=\lim\limits_{p\to +\infty}\left[\dfrac{-5}{\sqrt{9+\dfrac{5}{p^2}}+3}\right]=\dfrac{-5}{\sqrt9+3}=-\dfrac{5}6.](https://tex.z-dn.net/?f=%5Clim%5Climits_%7Bx%5Cto+-%5Cinfty%7D%5Bx%28%5Csqrt%7B9x%5E2%2B5%7D%2B3x%29%5D.%5C+Not%5Cbreve%7Ba%7Dm%5C+x%3D-p%2C%5C+deci%5C+p%5Cto%2B%5Cinfty.%5C+Limita%5C+devine%3A%5C%5C%5C%5C%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cleft%28%5Csqrt%7B9p%5E2%2B5%7D-3p%5Cright%29%5Cright%5D%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cdfrac%7B%5Cleft%28%5Csqrt%7B9p%5E2%2B5%7D-3p%5Cright%29%5Cleft%28%5Csqrt%7B9p%5E2%2B5%7D%2B3p%5Cright%29%7D%7B%5Csqrt%7B9p%5E2%2B5%7D%2B3p%7D%5Cright%5D%3D%5C%5C%5C%5C%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cdfrac%7B9p%5E2%2B5-9p%5E2%7D%7B%5Csqrt%7B9p%5E2%2B5%7D%2B3p%7D%5Cright%5D%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cdfrac%7B5%7D%7B%5Csqrt%7Bp%5E2%5Ccdot%5Cleft%289%2B%5Cdfrac%7B5%7D%7Bp%5E2%7D%5Cright%29%7D%2B3p%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cdfrac%7B5%7D%7B%7Cp%7C%5Csqrt%7B9%2B%5Cdfrac%7B5%7D%7Bp%5E2%7D%7D%2B3p%7D%5Cright%5D%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B-p%5Cdfrac%7B5%7D%7Bp%5Csqrt%7B9%2B%5Cdfrac%7B5%7D%7Bp%5E2%7D%7D%2B3p%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%5Clim%5Climits_%7Bp%5Cto+%2B%5Cinfty%7D%5Cleft%5B%5Cdfrac%7B-5%7D%7B%5Csqrt%7B9%2B%5Cdfrac%7B5%7D%7Bp%5E2%7D%7D%2B3%7D%5Cright%5D%3D%5Cdfrac%7B-5%7D%7B%5Csqrt9%2B3%7D%3D-%5Cdfrac%7B5%7D6.)
Green eyes.
Uite soluția corectă:
Green eyes.
Alte întrebări interesante
Biologie,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă