Cele doua probleme, va rog!
Rezolvare completa, mulțumesc!
Răspunsuri la întrebare
Răspuns:
1. EF=1800 m
2. A(DMNC) = 11 dm²
Explicație pas cu pas:
1. (a)
(b)
Din (a) și (b) ⇒ EF║ BC ⇒ Δ AEF asemenea cu Δ ABC ⇒ de unde:
2. Demonstrăm asemnănarea triunghiurilor ADM și BMN:
∡AMD + ∡BMN = 90° (pentru că ∡DMN=90° conform ipotezei) (a)
∡AMD + ∡ADM = 90° (pentru că AMD este dreptunghic în A) (b)
Din (a) și (b) ⇒ ∡BMN = ∡ADM (c)
∡MAD = ∡MBN = 90° (d)
Din (c) și (d) ⇒ ΔADM asemenea cu ΔBMN (conform criteriului UU)
Din asemănarea celor două triunghiuri rezultă că:
⇒
Aria patrulaterului DMNC o calculăm ca diferență între aria pătratului ABCD și ariile triunghiurilor ADM și MNB
Aria pătratului ABCD = 4x4 = 16 dm²
Aria unui triunghi dreptunghic este egală cu semiprodusul catetelor.
A(ADM) = (AD x AM):2 = (4x2):2 = 4 dm²
A(MNB) = (MB x BN):2 = (2x1):2 = 1 dm²
A(DMNC) = 16 - (4+1) = 16-5 = 11 dm²