Cine imi explica cand se folosesc -b/2a si -d/4a la valoile minime si maxime functilor de gradul 2
albatran:
ai un raspuns exhausiv...cum le folosesti??le folosesti astfel..extremul va avea intyotdeaunmja coordonatele respective, in ac ordine pe x si pe y
Răspunsuri la întrebare
Răspuns de
1
Sa luam o functie de gradul doi de forma generala
. Graficul functiei de gradul 2 este o parabola, iar in functie de semnul coeficientului dominant, adica al lui a, parabola respectiva va avea varful "in sus", pentru a negativ, sau "in jos", pentru a pozitiv. Coordonatele varfului parabolei vor fi
, unde primul raport reprezinta valoarea lui x pentru care functia ia valoarea maxima sau minima (daca este maxima sau minima depinde tot de semnul lui a, deoarece daca varful este in sus, adica a negativ, functia va avea un punct de maxim, iar daca varful este in jos, adica a pozitiv, functia va avea un punct de minim), iar cea de-a doua reprezinta valoarea maxima sau minima pe care o ia functia. Asta se poate justifica in felul urmator, rescriind putin forma generala a functiei:

Am facut asta pentru a forma urmatorul patrat:


Din forma asta a functiei se poate vedea ca daca avem
, atunci
, ceea ce explica de ce acesta este valoarea extrema a functiei, pentru ca daca a este pozitiv, cum patratul pe care l-am format este mereu mai mare sau egal ca zero, produsul cu a nu ii schimba semnul, deci pentru orice alta valoare a lui x, functia va lua o valoare mai mare decat aceasta, deci reprezinta minimul, iar daca a este negativ, produsul schimba semnul patratului, deci va fi mai mic sau egal ca zero, iar pentru orice alta valoare a lui x, functia va lua o valoare mai mica decat aceasta, deci este maximul functiei.
Am facut asta pentru a forma urmatorul patrat:
Din forma asta a functiei se poate vedea ca daca avem
Alte întrebări interesante
Matematică,
8 ani în urmă
Ed. muzicală,
8 ani în urmă
Matematică,
8 ani în urmă
Franceza,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă