Matematică, întrebare adresată de catypiciu, 9 ani în urmă

Combinari n luate 1+combinari de n luate4+combinari n luate 7+......+combinari n luate de n


Utilizator anonim: ia scrie tu mai atent !
albastruverde12: Ultimul termen nu este combinari de n luate cate n, ci combinari de n luate cate 3[(n-1)/3]+1, dar in general suma se termina cu "+...". ([x]=partea intreaga a lui x)

Răspunsuri la întrebare

Răspuns de albastruverde12
2
\displaystyle Fie~\varepsilon~o~radacina~nereala~de~ordinul~3~a~unitatii. \\  \\ \varepsilon^3=1 \Leftrightarrow (\varepsilon-1)(\varepsilon^2+\varepsilon+1)=0 \Leftrightarrow \varepsilon^2+ \varepsilon+1=0. \\  \\ Fie~P(x)=(1+x)^n=C^0_n+C^1_nx+C^2_nx^2+C^3_nx^3+...+C^n_nx^n. \\  \\ Avem: \\  \\
\displaystyle P(1)=C^0_n+C^1_n+C^2_n+C^3_n+C^4_n+C^5_n+C^6_n+C^7_n+... \\  \\  P(\varepsilon)=C^0_n+C^1_n \varepsilon+C^2_n\varepsilon^2+C^3_n+C^4_n\varepsilon+C^5_n\varepsilon^2+C^6_n+C^7_n\varepsilon+... \\  \\ P(\varepsilon^2)=C^0_n+C^1_n\varepsilon^2+C^2_n\varepsilon+C^3_n+C^4_n\varepsilon^2+C^5_n\varepsilon+C^6_n+C^7_n\varepsilon^2+...

\displaystyle Deci \\  \\ P(1)=C^0_n+C^1_n+C^2_n+C^3_n+C^4_n+C^5_n+C^6_n+C^7_n+... \\  \\  \varepsilon^2P(\varepsilon)=C^0_n\varepsilon+C^1_n+C^2_n\varepsilon+C^3_n\varepsilon^2+C^4_n+C^5_n\varepsilon+C^6_n\varepsilon^2+C^7_n+... \\  \\ \varepsilon P(\varepsilon^2)=C^0_n\varepsilon+C^1_n+C^2_n\varepsilon^2+C^3_n\varepsilon+C^4_n+C^5_n\varepsilon^2+C^6_n\varepsilon+C^7_n+...

\displaystyle Daca~adunam~aceste~trei~relatii,~observam~ca~toate~combinarile, \\  \\ exceptandu-le~pe~C^1_n,~C^4_n,~C^7_n...,~vor~avea~coeficientul~ \\  \\ 1+\varepsilon+\varepsilon^2=0,~deci~se~vor~anula. \\  \\ Obtinem~P(1)+\varepsilon^2P(\varepsilon)+\varepsilon P(\varepsilon^2)=3S,~unde~S~este~suma~pe~care \\  \\ vrem~sa~o~calculam.

\displaystyle Deci~S=\frac{1}{3} \left( P(1)+\varepsilon^2P(\varepsilon)+\varepsilon P(\varepsilon^2) \right)= \\  \\ =\frac{1}{3} \left(2^n+\varepsilon^2(\varepsilon+1)^n+\varepsilon(\varepsilon^2+1)^n \right)= \\  \\ =\frac{1}{3} \left(2^n+\varepsilon^2 \cdot (-\varepsilon^2)^n+ \varepsilon \cdot (-\varepsilon)^n \right)= \\  \\ =\frac{1}{3} \left(2^n+(-1)^n\varepsilon^{2n+2}+(-1)^n\varepsilon^{n+1} \right)
\displaystyle Pentru~o~forma~finala~se~poate~inlocui~\varepsilon~cu~\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3} \\  \\ si~apoi~se~poate~utiliza~formula~lui~Moivre.

albastruverde12: O eroare de scriere: la epsilon^2 P(epsilon) coeficientul combinarilor de cate n luate cate 0 era epsilon^2.
Alte întrebări interesante