Matematică, întrebare adresată de anaaremere123415, 9 ani în urmă

comparati doua cresteri succesive de pret de 10% si 20% cu o crestere de 30%

Răspunsuri la întrebare

Răspuns de Dededededede23
7
Prima crestere: x + 10/100 din x = x+x/10
A doua crestere: x+x/10+20/100 din (x+x/10) = x+x/10+2x/10+2x/100

x+x/10+2x/10+2x/100 = x+3x/10+x/100 =  \frac{100x+30x+x}{100}  \frac{131x}{100}

Crestere cu 30% inseamna: x +30/100 din x = x+3x/10 =  \frac{10x+3x}{10}  \frac{13x}{10}  \frac{130x}{100}

 \frac{130x}{100} \ < \frac{131x}{100}

Dededededede23: Vai, scuze, am gresit. Am facut doua cresteri cu 10%, imediat corectez.
anaaremere123415: lasa..nu conteaza..mi-a raspuns altcineva.mersi mult pentru efortul depus
Răspuns de GreenEyes71
11
Salut,

Varianta 1, două creșteri succesive, de 10% și de 20%:

Dacă x este prețul inițial, după creșterea de 10%, prețul define:

x*(1 + 10%) = x*(1 + 10/100) = x*(1 + 1/10) = 11x/10 = 1,1x.

Apoi, acest 1,1x crescut cu 20% devine așa:

1,1x*(1+ 20%) = 1,1x*(1 + 20/100) = 1,1x*(1+1/5) = 1,1x*6/5 = 11*6x/(10*5) =
= 66x/50.

Varianta 2, creștere cu 30%:

x*(1 + 30%) = x*(1 + 30/100) = x*(1 + 3/10) = 13x/10 = 65x/50 (am amplificat cu 5).

Cum 66x/50 > 65x/50, înseamnă că creșterea în 2 pași (cu 10% și apoi cu 20%) este mai mare decât creșterea de preț, într-o singură fază, cu 30%.

Ai înțeles ?

Green eyes.
Alte întrebări interesante