Matematică, întrebare adresată de Kuku12, 9 ani în urmă

cum se calculeaza sin^8 pi/12 - cos^8 pi/12

Răspunsuri la întrebare

Răspuns de Rayzen
1
sin^8 pi/12 - cos^8 pi/12 =
= (sin^4 pi/12 + cos^4 pi/12)(sin^4 pi/12 - cos^4 pi/12) =
= (sin^4 pi/12 + cos^4 pi/12)(sin^2 pi/12 + cos^2 pi/12)( sin^2 pi/12 - cos^2 pi/12) =
= (sin^2^2 pi/12 + cos^2^2 pi/12)×1×(-cos(2pi/12)) =
= ((sin^2 pi/12+cos^2 pi/12)^2-2sin^2 pi/12 cos^2 pi/12))×(-√3/2) =
= (1^2 - 1/2× sin^2 pi/6)×(-√3/2) =
= (1-1/8)×(-√3/2) =
= (-7√3)/16

Kuku12: salut, nu prea inteleg randul de dupa sin^2^2 pi/12 + cos^2^2 pi/12 ce formula ai aplicat? daca poti sa mi explici te rog
Rayzen: sin²x + cos²x = 1
Rayzen: Aaaa. Am aplicat: a²+b² = (a+b)²-2ab
Rayzen: a fiind sin² pi/12 și b fiind cos² pi/12
Kuku12: ahaa mersi mult, acum am inteles
Kuku12: si mai o intrebare, acolo ai scos un 1/2 in fata la formula cu cos2x pt ca era la patrat?
Rayzen: Da, și cu 1/2, in fața, 2 se transforma in 4.
Kuku12: multumesc!
Răspuns de EnglishzzBoi
2
\sin ^8\left(\frac{\pi }{12}\right)-\cos ^8\left(\frac{\pi }{12}\right) \\ \sin \left(\frac{\pi }{12}\right)=\sin \left(\frac{\frac{\pi }{6}}{2}\right)=\sqrt{\frac{1-\cos \left(\frac{\pi }{6}\right)}{2}}=\frac{\sqrt{2-\sqrt{3}}}{2} \\  \\ \cos \left(\frac{\pi }{12}\right)=\cos \left(\frac{\frac{\pi }{6}}{2}\right) =\sqrt{\frac{1+\cos \left(\frac{\pi }{6}\right)}{2}}=\frac{\sqrt{2+\sqrt{3}}}{2} \\  \\ =\left(\frac{\sqrt{2-\sqrt{3}}}{2}\right)^8-\left(\frac{\sqrt{2+\sqrt{3}}}{2}\right)^8=\frac{\left(2-\sqrt{3}\right)^4}{2^8}-\frac{\left(2+\sqrt{3}\right)^4}{2^8}=\frac{\left(2-\sqrt{3}\right)^4-\left(2+\sqrt{3}\right)^4}{256}=\frac{-112\sqrt{3}}{256}=-\frac{7\sqrt{3}}{16}
Alte întrebări interesante