Matematică, întrebare adresată de Alexandravert, 8 ani în urmă

Cum se poate calcula a?

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
3

 

\displaystyle\bf\\a=log_{\sqrt2-1}\Big(\sqrt3+1\Big)+log_{\sqrt2+1}\Big(\sqrt3+1\Big)\\\\a=\frac{1}{log_{\sqrt3+1}\Big(\sqrt2-1\Big)}+\frac{1}{log_{\sqrt3+1}\Big(\sqrt2+1\Big)}\\\\\textbf{Aducem fractiile la acelasi numitor.}

.

\displaystyle\bf\\a=\frac{log_{\sqrt3+1}\Big(\sqrt2+1\Big)}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}+\\\\\\+\frac{log_{\sqrt3+1}\Big(\sqrt2-1\Big)}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\a=\frac{log_{\sqrt3+1}\Big(\sqrt2+1\Big)+log_{\sqrt3+1}\Big(\sqrt2-1\Big)}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}

.

\displaystyle\bf\\a=\frac{log_{\sqrt3+1}\left[\Big(\sqrt2+1\Big)\times\Big(\sqrt2-1\Big)\right]}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\a=\frac{log_{\sqrt3+1}\left[\Big(\sqrt2\Big)^2-1^2\right]}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\

.

\displaystyle\bf\\a=\frac{log_{\sqrt3+1}\Big[2-1\Big]}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\a=\frac{log_{\sqrt3+1}\Big[1\Big]}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\a=\frac{0}{\left[log_{\sqrt3+1}\Big(\sqrt2-1\Big)\right]\times\left[log_{\sqrt3+1}\Big(\sqrt2+1\Big)\right]}\\\\\\\boxed{\boxed{\bf~a=0}}

 

 


Alexandravert: Mulțumesc!
tcostel: Cu placere!
Alte întrebări interesante