cum se rezolva X la lg(2x) = 5
Răspunsuri la întrebare
Răspuns de
1
Vom logaritma si vom obtine:
Puterea logaritmului coboara in fata si obtinem:
lg(2x)×lg(x)=lg5
lg(2x)=lg2+lg(x)
Vom avea:
(lg2+lg(x))×lg(x)=lg5
Notam lg(x)=y
lg2×y+y²=lg5
Stim ca lg5=lg(10:2)=lg10-lg2=1-lg2
lg2×y+y²=lg10-lg2
lg2×y+y²=1-lg2
Grupam convenabil termenii si obtinem:
lg2(y+1)+y²-1=0
lg2(y+1)+(y+1)(y-1)=0
Dam factor comun y+1 si obtinem:
(y+1)(lg2+y-1)=0
Avem doua solutii:
1) y+1=0
y=-1
lgx=-1
x=10⁻¹
2) lg2+y-1=0
y=1-lg2
y=lg5
lgx=lg5
x=5
Alte întrebări interesante
Limba română,
8 ani în urmă
Biologie,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Istorie,
9 ani în urmă