Matematică, întrebare adresată de SkyCode55, 8 ani în urmă

Daca intr-o sala de clasa se aseaza cate un elev intr-o banca,raman 6 elevi in picioare.Daca se aseaza cate 2 elevi intr-o banca,iar intr-o banca se aseaza unul singur,raman 4 banci libere
a)cate banci sunt in clasa?
b)Cati elevi sunt in clasa?

Răspunsuri la întrebare

Răspuns de albatran
3
fie e, numarul elevilor si b, numarul bancilor

atunci:
e=b*1+6
e=(b-1-4)*2+1

e=b+6
e=2(b-5)+1

2(b-5)+1=b+6
2b-10+1=b+6
2b-b=9+6
b=15
e=b+6=15+6=21
care verifica ambele conditii
Răspuns de Utilizator anonim
1
Notez:

e - numărul elevilor;

b - numărul băncilor.


Avem două cazuri:

I) Dacă ar fi cu 6 elevi mai puțini, atunci ei s-ar putea așeza câte unul în

 fiecare bancă.

e - 6 = b ⇒ e = b + 6     (1)

II) Dacă ar fi cu 1 + 4·2 = 9 elevi mai mulți, ei s-ar putea așeza câte doi

 în fiecare bancă.

e +9 = 2b ⇒ e = 2b - 9     (2)

(1),  (2) ⇒ 2b - 9 = b + 6 ⇒ 2b - b = 6 + 9 ⇒ b = 15     (3)

(1),  (3) ⇒ e = 15 + 6 ⇒ e = 21

Așadar, în clasă sunt 21 de elevi și 15 bănci.



Alte întrebări interesante