dau 53 de puncte pentru raspunsul la aceaste probleme
Anexe:
Răspunsuri la întrebare
Răspuns de
1
3x^2+2x-5=0
x=\frac{-2+\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
=\frac{-2+\sqrt{2^2-\left(-5\right)\cdot \:3\cdot \:4}}{6}
\sqrt{2^2-4\cdot \:3\left(-5\right)}=\sqrt{64}
=\frac{-2+\sqrt{64}}{6}
\sqrt{64}=8
=\frac{-2+8}{6}
=1
x=\frac{-2-\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
\frac{-2-\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
=\frac{-2-\sqrt{2^2-\left(-5\right)\cdot \:3\cdot \:4}}{6}
\sqrt{2^2-4\cdot \:3\left(-5\right)}=\sqrt{64}
=\frac{-2-\sqrt{64}}{6}
\sqrt{64} = 8
=\frac{-2-8}{6}
=\frac{-10}{6}
=-\frac{10}{6}
=-\frac{5}{3}
x=1, x=-\frac{5}{3}
x=\frac{-2+\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
=\frac{-2+\sqrt{2^2-\left(-5\right)\cdot \:3\cdot \:4}}{6}
\sqrt{2^2-4\cdot \:3\left(-5\right)}=\sqrt{64}
=\frac{-2+\sqrt{64}}{6}
\sqrt{64}=8
=\frac{-2+8}{6}
=1
x=\frac{-2-\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
\frac{-2-\sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3}
=\frac{-2-\sqrt{2^2-\left(-5\right)\cdot \:3\cdot \:4}}{6}
\sqrt{2^2-4\cdot \:3\left(-5\right)}=\sqrt{64}
=\frac{-2-\sqrt{64}}{6}
\sqrt{64} = 8
=\frac{-2-8}{6}
=\frac{-10}{6}
=-\frac{10}{6}
=-\frac{5}{3}
x=1, x=-\frac{5}{3}
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Chimie,
9 ani în urmă