∫ de la -1 la 3 1\x+2 dx
Răspunsuri la întrebare
Răspuns:
I=∫
0
1
x
2
−16
1
dx=?
\begin{gathered}\it \dfrac{1}{x^2-16} = \dfrac{1}{x^2-4^2} = \dfrac{1}{(x-4)(x+4)} =\dfrac{A}{x-4} + \dfrac{B}{x+4} = \\\;\\ \\\;\\ = \dfrac{Ax+4A+Bx-4B}{(x-4)(x+4)} = \dfrac{(A+B)x +4(A-B)}{(x-4)(x+4)} \Longrightarrow \end{gathered}
x
2
−16
1
=
x
2
−4
2
1
=
(x−4)(x+4)
1
=
x−4
A
+
x+4
B
=
=
(x−4)(x+4)
Ax+4A+Bx−4B
=
(x−4)(x+4)
(A+B)x+4(A−B)
⟹
\begin{gathered}\it \Longrightarrow \begin{cases}\it A+B=0 \Rightarrow A= -B\ \ \ (*) \\\;\\ \it 4(A-B) =1 \Rightarrow A-B = \dfrac{1}{4} \stackrel{(*)}{\Longrightarrow} -B-B=\dfrac{1}{4}\Rightarrow B = -\dfrac{1}{8}\end{cases} \\\;\\ \\\;\\ \Longrightarrow A = \dfrac{1}{8}\end{gathered}
⟹
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧
A+B=0⇒A=−B (∗)
4(A−B)=1⇒A−B=
4
1
⟹
(∗)
−B−B=
4
1
⇒B=−
8
1
Acesta este raspunsu