Matematică, întrebare adresată de mihneapitur15082015, 8 ani în urmă

Demonstrati ca f: {2,4,6,8,10} ->R, f(x) =2 la puterea 2x+2 + (-4) la puterea x+1 este constanta. ​

Răspunsuri la întrebare

Răspuns de Matei
0

f : {2, 4, 6, 9, 10} -> R

f(x) = 2^(2x+2) + (-4)^(x+1)

f(2) = 2^(4+2) + (-4)^3 = 2^6 + (-4)^3 = 64 - 64 = 0

f(4) = 2^(8+2) + (-4)^5 = 2^10 - 4^5 = 2^10 - 2^10 = 0

Vei calcula mai departe f(6), f(8) si f(10).

Se observa ca + (-4) poate fi scris ca - 2^2, iar numerele se anuleaza.

Pentru orice valoare x din domeniul dat, functia f(x) va da acelasi rezultat (zero).

Prin urmare, functia este constanta.

q.e.d.

Alte întrebări interesante