Demonstrati ca pentru orice numar natural nenul n are loc egalitatea
1+2+3+...+n(n+1):2
Răspunsuri la întrebare
Răspuns de
3
Răspuns:
Se folosește metoda inducției matematice
P(1): 1=1(1+1)/2 => 1=1*2/2 =>1 =1 (A)
P(k): 1+2+3+…+k= k(k+1)/2= S
P(k+1): 1+2+3+…+k+(k+1)=(k+1)(k+2)/2=S'
S'=S+k+1
k(k+1)/2+k+1=(k+1)(k+2)/2 | *2
k(k+1)+2k+2=(k+1)(k+2)
k²+k+2k+2=k²+k+2k+k+2 (A)
=> P(n) (A) ∀ n∈N*
cuibaralexandru2:
multumesc
Alte întrebări interesante
Matematică,
8 ani în urmă
Informatică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă