Demonstrati ca, pentru orice x, y, z, a, b, c apartin lui R, avem:
(ax+by) totul la patrat <= (a patrat + b patrat)(x patrat+ y patrat)
AndraGogan29:
inegalitatea Cauchy-Buniakovski -Schwars
Răspunsuri la întrebare
Răspuns de
3
(ax+by)² <= (a² +b²)·(x² +y²) ;
(ax+by)²=a²x² +2axby +b²y² iar (a² +b²)·(x² +y²)=a²x² +a²y² +b²x² +b²y² => inegalitatea de mai sus este echivalenta cu
a²x² +2axby +b²y² <=a²x² +a²y² +b²x² +b²y² dar deoarece a,b,x,y∈R₊ atunci => a²x² +b²y² >=2axby <=> (ax-by)² >=0 ,care este adevarat pentru orice a,b,x,y∈R₊ =>
(ax+by)² <=(a² +b²)·(x² +y²) .
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Engleza,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă