Matematică, întrebare adresată de 1053647didi, 8 ani în urmă

Demonstrati ca \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{a+c} \leq \frac{1}{2} ( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} ), oricare ar fi a, b, c numere reale pozitive.

Răspunsuri la întrebare

Răspuns de Rayzen
3

Inegalitatea mediilor:

m_h \leq m_g \leq m_a\leq m_p

Unde  \displaystyle m_h(x,y) = \frac{2xy}{x+y}  și  \displaystyle m_a(x,y) = \frac{x+y}{2}

Mă voi folosi doar de  m_h \leq m_a :

\left.\begin{cases}\displaystyle \frac{2\cdot \frac{1}{a}\cdot \frac{1}{b}}{\frac{1}{a}+\frac{1}{b}} \leq \frac{\frac{1}{a}+\frac{1}{b}}{2}  \\ \\\displaystyle\frac{2\cdot \frac{1}{b}\cdot \frac{1}{c}}{\frac{1}{b}+\frac{1}{c}} \leq \frac{\frac{1}{b}+\frac{1}{c}}{2}\\ \\\displaystyle \frac{2\cdot \frac{1}{a}\cdot \frac{1}{c}}{\frac{1}{a}+\frac{1}{c}} \leq \frac{\frac{1}{a}+\frac{1}{c}}{2}\end{cases}\right)(+) \,\,\,\Rightarrow

\Rightarrow \displaystyle \!{^{^{^{^{^{^{\displaystyle ab)}}}}}}}\!\!\frac{2\cdot \frac{1}{a}\cdot \frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}\,+ \!\!{^{^{^{^{^{^{\displaystyle bc)}}}}}}}\!\!\frac{2\cdot \frac{1}{b}\cdot \frac{1}{c}}{\frac{1}{b}+\frac{1}{c}}\,+ \!{^{^{^{^{^{^{\displaystyle ac)}}}}}}}\!\!\frac{2\cdot \frac{1}{a}\cdot \frac{1}{c}}{\frac{1}{a}+\frac{1}{c}}\leq  \frac{\frac{1}{a}+\frac{1}{b}}{2}+\frac{\frac{1}{b}+\frac{1}{c}}{2}+\frac{\frac{1}{a}+\frac{1}{c}}{2}

\Rightarrow \displaystyle  \frac{2}{b+a}+\frac{2}{c+b}+\frac{2}{c+a}\leq \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\dfrac{1}{c}\right)

\Rightarrow \displaystyle  \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{a+c} \leq \frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)

\Rightarrow \displaystyle \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{a+c}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}

\Rightarrow \boxed{\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\leq \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}


1053647didi: Multumesc!
Rayzen: Cu drag!
Alte întrebări interesante