determina ultima cifra a nr 5 la puterea 62 si 8 la puterea 33
Răspunsuri la întrebare
Răspuns de
8
[tex]\displaystyle \bf \\ U \Big(5^{62}\Big) = 5 \\\\ \texttt{Deoarece 5 ridicat la orice putere are ultima cifra 5.}\\\\ U \Big(8^{33}\Big) =U\Big(8^{32+1}\Big) =U\Big(8^{32}\times 8 \Big) =U\Big(8^{4\times8}\times 8 \Big) =\\\\ =U\left(\Big(8^{4}\Big)^{8}\times 8 \right)=U\left(4096^8\times 8 \right) =U\left(6^8\times 8 \right) =\\\\ =U\left(6\times 8 \right) =U\left(48 \right) = \boxed{\bf 8}[/tex]
mi1mi:
multumesc !
Alte întrebări interesante
Matematică,
8 ani în urmă
Franceza,
8 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă