Matematică, întrebare adresată de Utilizator anonim, 8 ani în urmă

Determinați cel mai mic număr natural care împărțit la 6 da catul a si restul b și împărțit la 4 da catul b si restul a.Repede plzzzzzzzzzz rexolvare pas ci pas


dariatudorantonia27: sigur e corecta problema?

Răspunsuri la întrebare

Răspuns de cocirmariadenis
1

Răspuns:  23 ->  numarul natural

Explicație pas cu pas:

Notez cu ,,n" -> numarul natural

n : 6 = a rest b ⇒  n = 6 × a + b;   unde b < 6

n : 4 = b rest a ⇒   n = 4 × b + a;  unde a < 4

______________________________

6 × a + b = 4 × b + a ⇔  n ->  numarul natural

    6 × a - a = 4 × b - b

       5 × a = 3 × b

5 si 3 -> numere prime intre ele ⇒  a = 3, iar b = 5

 Inlocuiesc in relatiile date valorile obtinute, pentru a determina numarul natural:

n : 6 = 3  rest 5  ⇒   n = 3 × 6 + 5  ⇒  n = 23 → numarul natural

sau:

n : 4 = 5 rest 3  ⇒    n = 4 × 5 + 3  ⇒   n = 23

Răspuns de Triunghiu
1

Răspuns:

Explicație pas cu pas:

Anexe:
Alte întrebări interesante