Matematică, întrebare adresată de Elyssa, 9 ani în urmă

Determinati in fiecare dintr urmatoarele cazuri S a solutiilor complexe a urmatoarelor ecuatii : 
a. x²-3x+2=0
b. x²-4c+5=0
c. x²+6x+10=0
d. 2x²-3x+2=0
e. x²-2x+5=0
f. x²-6x+13=0


anamariaangel: la punctul b -4c era cumva -4x?
Elyssa: da, scuze greseala mea

Răspunsuri la întrebare

Răspuns de anamariaangel
4
a)x ^{2} -3x+2=0

Δ= b^{2} -4ac=(-3) ^{2} -4*1*2=9-8=1

 x_{1} = \frac{-b- \sqrt{delta} }{2a} = \frac{3-1}{2} = \frac{2}{2} =1

 x_{2} = \frac{-b+ \sqrt{delta} }{2a} = \frac{3+1}{2} = \frac{4}{2} =2

S={1;2}

b) x ^{2} -4x+5=0

Δ= b^{2} -4ac=(-4) ^{2} -4*1*5=16-20=-4

 x_{1}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{4-i \sqrt{4} }{2} = \frac{4-2i}{2} =   \frac{2(2-i)}<br />{2}=2-i

 x_{2}= \frac{-b+i \sqrt{-delta} }{2a} = \frac{4+i \sqrt{4} }{2} = \frac{4+2i}{2} = \frac{2(2+i)}{2}=2+i

S={2-i;2+i}

c) x^{2} +6x+10=0

Δ= b^{2} -4ac=6 ^{2} -4*1*10=36-40=-4

 x_{1}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{-6-i \sqrt{4} }{2} = \frac{6-2i}{2} = \frac{2(3-i)}{2}=3-i

 x_{2}= \frac{-b+i \sqrt{-delta} }{2a} = \frac{-6+i \sqrt{4} }{2} = \frac{6+2i}{2} = \frac{2(3+i)}{2}=3+i

S={3-i;3+i}

d)
 2x^{2} -3x+2=0

Δ= b^{2} -4ac=(-3) ^{2} -4*2*2=9-16=-7

 x_{1}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{3-i \sqrt{7} }{4}

 x_{2}= \frac{-b+i \sqrt{-delta} }{2a} = \frac{3+i \sqrt{7} }{4}

S={ \frac{3-i \sqrt{7} }{4}; \frac{3+i \sqrt{7} }{4}}

e) x^{2} -2x+5=0

Δ= b^{2} -4ac=(-2) ^{2} -4*1*5=4-20=-16

 x_{1}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{2-i \sqrt{16} }{2} = \frac{2-4i}{2} = \frac{2(1-2i)}{2}=1-2i

 x_{2}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{2+i \sqrt{16} }{2} = \frac{2+4i}{2} = \frac{2(1+2i)}{2}=1+2i

S={1-2i;1+2i}

f) x^{2} -6x+13=0

Δ= b^{2} -4ac=(-6) ^{2} -4*1*13=36-52=-16

 x_{1}= \frac{-b-i \sqrt{-delta} }{2a} = \frac{6-i \sqrt{16} }{2} = \frac{6-4i}{2} = \frac{2(3-2i)}{2}=3-2i

 x_{1}= \frac{-b+i \sqrt{-delta} }{2a} = \frac{6+i \sqrt{16} }{2} = \frac{6+4i}{2} = \frac{2(3+2i)}{2}=3+2i

S={3-2i;3+2i}

Alte întrebări interesante