Determinati n∈N,astfel incat √n²+6n+28 ∈ N. Radicalul este mai mare , cuprinde si pe 6n si 28 ;)
albastruverde12:
Deja ti-am rezolvat 2 probleme similare cu aceasta, asa ca nu am de gand sa o rezolv si pe asta. Din explicatiile oferite ar fi trebuit sa o poti rezolva! Ajung la concluzia ca nu urmaresti cu atentie solutiile mele... Continui insa sa sper ca nu primesti "credite" pentru solutiile mele :/
Răspunsuri la întrebare
Răspuns de
8
[tex]Exercitiul\ de\ genul\ asta\ se\ poate\ rezolva\ in\ doua\ moduri:\\
Metoda\ 1:\\
\sqrt{n^2+6n+28}\in N, atunci\ exista\ p\in N, pentru\ care:\\
\sqrt{n^2+6n+28}=p\\
n^2+6n+28=p^2\\
n^2+6n+28-p^2=0\\
\Delta=36-4(28-p^2)\\
\Delta=4p^2-76\\
Atunci\ exista\ k\in N\ pentru\ care:\\
4p^2-76=k^2\\
4p^2-k^2=76\\
(2p-k)(2p+k)=76\\
2p-k\ si\ 2p+k\ au\ aceeasi\ paritate\ deci\ vom\ avea:\\
\left \{ {{2p-k=2} \atop {2p+k=38}} \right. \\
-----+\\
4p=40\Rightarrow p=10\\
Astfel\ vom\ avea\ :\\
[/tex]
[tex]\Delta=400-76=324\\ n_{1,2}=\frac{-6+-18}{2}\\ Deci\ n=6(cealalta\ solutie\ nu\ apartine\ in\ N).\\ \\ Metoda\ 2:\\ \sqrt{n^2+6n+28}\in N,atunci\ exista\ p\in N\ pentru\ care\ :\\ \sqrt{n^2+6n+28}=p\\ n^2+6n+28=p^2\\ (n+3)^2+19=p^2\\ (n+3)^2-p^2=-19\\ (n+3-p)(n+3+p)=-19\\ -19\ este\ numar\ prim\ deci\ vom\ avea\ doua\ sisteme: \\ \left \{ {{n+3-p=-1} \atop {n+3+p=19}} \right. \\ -----+\\ 2n+6=18\Rightarrow n=6\\ \left \{ {{n+3-p=-19} \atop {n+3+p=1}} \right.\\ ------+\\ 2n+6=-18 \\ [/tex]
[tex]2n=-24\Rightarrow n=-12(nu\ convine)\\ \boxed{\boxed{\boxed{S:n=6}}}[/tex]
[tex]\Delta=400-76=324\\ n_{1,2}=\frac{-6+-18}{2}\\ Deci\ n=6(cealalta\ solutie\ nu\ apartine\ in\ N).\\ \\ Metoda\ 2:\\ \sqrt{n^2+6n+28}\in N,atunci\ exista\ p\in N\ pentru\ care\ :\\ \sqrt{n^2+6n+28}=p\\ n^2+6n+28=p^2\\ (n+3)^2+19=p^2\\ (n+3)^2-p^2=-19\\ (n+3-p)(n+3+p)=-19\\ -19\ este\ numar\ prim\ deci\ vom\ avea\ doua\ sisteme: \\ \left \{ {{n+3-p=-1} \atop {n+3+p=19}} \right. \\ -----+\\ 2n+6=18\Rightarrow n=6\\ \left \{ {{n+3-p=-19} \atop {n+3+p=1}} \right.\\ ------+\\ 2n+6=-18 \\ [/tex]
[tex]2n=-24\Rightarrow n=-12(nu\ convine)\\ \boxed{\boxed{\boxed{S:n=6}}}[/tex]
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă