Determinati nr de termeni irationali ai dezvoltarii
Răspunsuri la întrebare
[tex][/tex][tex]\\ \boxed{\left(a+b\right)^n=\sum _{i=0}^n\binom{n}{i}a^{\left(n-i\right)}b^i} \\ \\ \left(1+\sqrt{2}\right)^{11} = > a=1,\:\:b=\sqrt{2} \\ \\ => \sum _{i=0}^{11}\binom{11}{i}\cdot \:1^{\left(11-i\right)}\left(\sqrt{2}\right)^i[/tex]
[tex]\\ i=0\quad :\quad \frac{11!}{0!\left(11-0\right)!}1^{11}\sqrt{2}^0 \\ i=1\quad :\quad \frac{11!}{1!\left(11-1\right)!}1^{10}\sqrt{2}^1 \\ \:i=2\quad :\quad \frac{11!}{2!\left(11-2\right)!}1^9\sqrt{2}^2 \\ i=3\quad :\quad \frac{11!}{3!\left(11-3\right)!}1^8\sqrt{2}^3 \\ i=5\quad :\quad \frac{11!}{5!\left(11-5\right)!}1^6\sqrt{2}^5 \\ i=6\quad :\quad \frac{11!}{6!\left(11-6\right)!}1^5\sqrt{2}^6 \\ \:i=7\quad :\quad \frac{11!}{7!\left(11-7\right)!}1^4\sqrt{2}^7[/tex]
[tex]\\ \:i=8\quad :\quad \frac{11!}{8!\left(11-8\right)!}1^3\sqrt{2}^8 \\ \:i=9\quad :\quad \frac{11!}{9!\left(11-9\right)!}1^2\sqrt{2}^9 \\ \:i=10\quad :\quad \frac{11!}{10!\left(11-10\right)!}1^1\sqrt{2}^{10} \\ \:i=11\quad :\quad \frac{11!}{11!\left(11-11\right)!}1^0\sqrt{2}^{11} \\ \\[/tex]