Matematică, întrebare adresată de Deghenis, 9 ani în urmă

Determinați nr nat a și b, astfel încât (a+b)•(b-3)=28

Răspunsuri la întrebare

Răspuns de Rayzen
1
(a+b)\cdot (b-3) = 28 ,\quad a,b\in \mathbb_{N} $ $\\  \\ \bullet (a+b) \in D_{28}^+ \Rightarrow (a+b) \in\Big\{1,2,7,14,28\Big\} \\ \\ \bullet (b-3)\in D_{28}^+  \Rightarrow (b-3)\in\Big\{1,2,7,14,28\Big\} \\  \\ $Dar, $(a+b)\cdot (b-3) = 28 \Rightarrow  \\ \\ \Rightarrow \boxed{1} \quad (a+b) \in \Big\{1,2,7,14,28\Big\}$ $ $si$ $ $  (b-3)\in \Big\{28,14,7,2,1\Big\}\Big|+3 \\$(in ordinea asta) \\  \\ \Rightarrow (a+b)\in \Big\{1,2,7,14,28\Big\}$ $ $si$ $ $ b \in \Big\{31,17,10,5,4\Big\}

(a+b) \in \Big\{{1,2,7,14,28\Big\} \Big|-b \Rightarrow $ $ \\ \\ \Rightarrow  a\in \Big\{1-31,2-17,7-10,14-5,28-4\Big\} \Rightarrow \\ \\ \Rightarrow a \in \Big\{-30,-15,-3,9,24\Big\}, $ dar, a\in \mathbb_{N} \Rightarrow $ $ a\in \Big\{9,24\Big\}  \Rightarrow  \\ \\ \Rightarrow ($luam valorile lui b de pe pozitiile 4 si 5)  \Rightarrow b \in \Big\{5,4\Big\} \\  \\ \Rightarrow (a,b) = \Big\{(9,5); (24,4)\Big\}

\boxed{2} \quad (a+b) \in\Big\{28,14,7,2,1\Big\}  $ $ $si$ $ $ (b-3)\in  \Big\{1,2,7,14,28\Big\}\Big|+3  \\  \\ \Rightarrow \quad $ $ b \in \Big\{4,5,10,17,31\Big\} \\  \\ (a+b) \in \Big\{28,14,7,2,1\Big\} \Big|-b \Rightarrow a\in \Big\{24,9,-3,-15-30\Big\}, $dar a\in \mathbb_N \Rightarrow $\\ \\   \Rightarrow $ $ a\in \Big\{24,9\Big\} \Rightarrow ($luam termenii de pe pozitiile 1 si 2 din b) \Rightarrow  \\ \\ \Rightarrow b \in \Big\{4,5\Big\} \Rightarrow (a,b) = \Big\{(24,4);(9,5)\Big\}

\\ $ Din \boxed{1}$ $ \cup $ $ \boxed{2} $ \Rightarrow (a,b)\in \Big\{(9,5);(24,4);(24,4);(9,5)\Big\} \Rightarrow  \\ \\ \Rightarrow \boxed{(a,b) \in \Big\{(9,5);(24,4)\Big\}}

Rayzen: S-ar putea sa nu mai fi fost nevoie de cazul 2, fiindca ne-au dat aceleasi solutii. Dar daca numerele nu erau naturale, cred ca ar fi diferit.
Alte întrebări interesante