Matematică, întrebare adresată de iasmi34, 8 ani în urmă

Determinați nr Nat x și y astfel încât fracțiile 2/x și y+1/3 sa fie egale

Răspunsuri la întrebare

Răspuns de iakabcristina2
2
2/x = (y+1)/3
x(y+1)=6
Dacă x=6, y+1=1 =>y=0 E bun
Dacă x=2, y+1=3 =>y=2 E bun
Dacă x=3, y+1=2 =>y=1 E bun

iakabcristina2: Orice înmulțire cu 0 dă 0. Nouă ne trebuie 6...
iakabcristina2: Da, acum am văzut greșeala... Scuze !
1Viserys: y+1 = 1. inmultind cu x (care este 6) da intr-adevar 6
iakabcristina2: Nu trebuia să raportezi, corectam...
1Viserys: am raportat inainte sa raspunzi, ti-as da unreport dar nu se poate. scuze, ar fi trebuit sa ma uit pe profilul tau inainte
iakabcristina2: Nu contează, un moderator îmi va da ocazia să corectez...
iakabcristina2: Ce importanță are profilul meu ??? Toți greșim, mai ales eu, care n-am nimic comun cu matematica, e doar un hobby.
1Viserys: pai faptul ca esti utilizator de elita m-ar fi convins ca nu esti la misto aici
1Viserys: mai sunt unii care raspund gresit si mult ca sa stranga puncte repede, am presupus (in mod gresit) ca acesta este cazul
DumnezeuNeAjuta: ma ajutati plsslsllsss
Răspuns de 1Viserys
1

2/x = y+1/3 => (prin inmultirea pe diagonala a mezilor cu extremii)

6 = xy + x

deoarece x si y ∈|N, vom lua manual sa verificam posibile respunsuri.

pt. y=0, x=6  - merge

pt. y=1, => x+x=6 =>x=3 - merge si asta

pt. y=2, => 2x+x=6 =>3x=6 => x=2 - merge

pt. y=3 => 3x+x=6 =>4x=6 - NU merge pt x natural

pt. y=4 =>4x+x=6 =>5x=6 - NU merge pt x natural

pt y=5 => 5x + x =6 =>6x=6 => x=1 - merge

si cam atat, ca deja y va deveni 6 si sarim peste limita.

in concluzie, perechile (x, y) care verifica ipoteza sunt

(6, 0), (3, 1), (2, 2), (1, 5)

Alte întrebări interesante