Matematică, întrebare adresată de lupularisa714, 8 ani în urmă

Determinați numărul natural nenul n stiind că mulțimea A={1,2,3...n} are exact 10 submulțimi cu doua elemente .​

Răspunsuri la întrebare

Răspuns de RăzvanP
6

Vom folosi combinarile:

C_n^k=\frac{n!}{k!(n-k)!} \\\\n!=1\cdot2\cdot 3\cdot...\cdot n\\\\k!=1\cdot2\cdot 3\cdot...\cdot k

C_n^2=10

\frac{n!}{2!\cdot (n-2)!} =10\\\\

Stim ca:

n!=(n-2)!(n-1)n

\frac{(n-2)!(n-1)n}{2!\cdot (n-2)!}=10\\\\ \frac{n(n-1)}{2}=10\\\\ n(n-1)=20\\\\n^2-n-20=0\\\\\Delta=1+80=81\\\\n_1=\frac{1+9}{2} =5\\\\n_2=\frac{1-9}{2} =-4 < 0\ NU

Raspuns: n=5

Un alt exercitiu asemanator gasesti aici: https://brainly.ro/tema/5012184

#SPJ5

Alte întrebări interesante