determinați numerele x,y și z invers proporționale cu 3, 6 și 9 , știind că: ...
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
{x ; y ; z} i.p {3 ; 6 ; 9}
3x = 6y = 9z = k, unde k = coeficient de propoționalitate
a)
x + y + z = 28
6k + 3k + 2k = 504
11k = 504
b)
x + y + z = 42
6k + 3k + 2k = 756
11k = 756
c)
x + y + z = 84
6k + 3k + 2k = 1512
11k = 1512
Răspuns:
Explicație pas cu pas:
Determinați numerele x,y și z invers proporționale cu 3, 6 și 9 , știind că: ...
x+y+z=28
x·3=y·6=z·9=k ⇒x·3=k ⇒x=k/3
y·6=k ⇒y=k/6
z·9=k ⇒z=k/9 Inlocuim valorile in suma data. ⇒
a) x+y+z=28 ⇒k/3+k/6+k/9=28 Aducem la acelasi numitor. ⇒(6k+3k+2k)/18=28 ⇒11k=18·28 ⇒11k=504 ⇒k=504/11 ⇒
x=k/3=504/(11·3)=168/11
y=k/6=504/(11·6)=84/11
z=k/9=504/(11·9)=56/11
Verificare: 168/11+84/11+56/11=308/11=28
b) x+y+z=42
k/3+k/6+k/9=42 Aducem la acelasi numitor. ⇒(6k+3k+2k)/18=42 ⇒11k=18·42 ⇒11k= 756 ⇒k=756/11
x=k/3=756/(11·3)=252/11
y=k/6=756/(11·6)=126/11
z=k/9=756/(11·9)=84/11
Verificare: 252/11+126/11+84/11=462/11=42
c) x+y+z=84
k/3+k/6+k/9=84 Aducem la acelasi numitor. ⇒(6k+3k+2k)/18=84 ⇒11k=18·84 ⇒11k= 1512 ⇒k=1512/11
x=k/3=1512/(11·3)=504/11
y=k/6=1512/(11·6)=252/11
z=k/9=1512/(11·9)=168/11
Verificare: 504/11+252/11+168/11=924/11=84