Matematică, întrebare adresată de dragosdarialaura09, 8 ani în urmă

Determinati solutiile ecuatiilor

Anexe:

Răspunsuri la întrebare

Răspuns de stancescuflorin741
2

Răspuns:

f) -  \frac{7}{3}  {x}^{2}  =  \frac{28}{3}  \\  - 7 {x}^{2}  = 28 \\  {x}^{2}  = 28 \div ( - 7) \\  {x}^{2}  =  - 4 \\ x1 =  \sqrt{ - 4}  \:  \: ecuatia \: nu \: are \: solutii \: reale \:  \\ x2 =  -  \sqrt{ - 4} \:  \: ecuatia \: nu \: are \: solutii \: reale

d)2 {x}^{2}  = 1 - ( { - 1})^{2}  \\ 2 {x}^{2}  = 1 + 1 \\ 2 {x}^{2}  = 2 \\  {x}^{2}  = 1 \\ x1 =  \sqrt{1}  = 1 \\ x2 =  -  \sqrt{1}  =  - 1

a)0.1 {x}^{2}  = 2.5 \\  \frac{1}{10}  {x}^{2}  =  \frac{25}{10}  \\  {x}^{2}  =  \frac{25}{10}  \div  \frac{1}{10} \\  {x}^{2}   =  \frac{25}{10}  \times  \frac{10}{1}  \\  {x}^{2}  = 25 \\ x1 =  \sqrt{25}  = 5 \\ x2 =  -  \sqrt{25}  =  - 5

b)0.1 {x}^{2}  + 0.02 = 0.003 \\  \frac{1}{10}  {x}^{2}  +  \frac{2}{100}  =  \frac{3}{1000}  \\  \frac{1}{10}  {x}^{2}  =  \frac{3}{1000}  -  \frac{2}{100}  \\  \frac{1}{10}  {x}^{2}  =  \frac{3}{1000}  -  \frac{20}{1000}  \\  \frac{1}{10}  {x}^{2}  =  -  \frac{17}{1000} \\   \frac{100 {x}^{2} }{1000}  =  \frac{  - 17}{1000}  \\ 100 {x}^{2}  =  - 17 \\  {x}^{2}  =  \frac{ - 17}{100}  \\  {x}^{2}  =  - 0.17 \\ x1 =  \sqrt{ - 0.17}  \: ecuatia \: nu \: are \: solutii \: reale \\ x2 =  -  \sqrt{ - 0.17}  \: ecuatia \: nu \: are \: solutii \: reale

c)29( {x}^{2}  - 3) =0 | \div 29 \\  \  {x}^{2}  - 3 = 0 \\  {x}^{2}  = 3 \\ x1 =  \sqrt{3}  \\ x2 =  -  \sqrt{3}

e) \frac{1}{4}  {x}^{2}  + 2 =  \frac{51}{25}  \\  \frac{25 {x}^{2} }{100}  +  \frac{200}{100}  =  \frac{51 \times 4}{100}  \\  \frac{25 {x}^{2} + 200 }{100}  =  \frac{204}{100}  \\ 25 {x}^{2}  + 200 = 204 \\ 25 {x}^{2}  = 4 \\  {x}^{2}  =  \frac{4}{25}  \\ x1 =  \sqrt{ \frac{4}{25} }  =  \frac{2}{5}  \\ x2 =  -  \sqrt{ \frac{4}{25} }  =  -  \frac{2}{5}

g)0.03 {x}^{2}  + 0.17 =  \frac{11}{25}  \\  \frac{3 {x}^{2} }{100}  +  \frac{17}{100}  =  \frac{44}{100}  \\ 3 {x}^{2}  + 17 = 44 \\ 3 {x}^{2} = 27 \\  {x}^{2}   = 9 \\ x1 =  \sqrt{9}  = 3 \\ x2 =  -  \sqrt{9}  =  - 3

h) \frac{1}{2}  {x}^{2}  + 0.5 =  \sqrt{0.25}  \\  \frac{ {x}^{2} }{2}  +  0.5  =  \sqrt{ \frac{25}{100} }  \\  \frac{ {x}^{2} }{2}  + 0.5 =  \frac{5}{10}  \\  \frac{5 {x}^{2} }{10}  +  \frac{5}{10}  =  \frac{5}{10}  \\ 5 {x}^{2}  + 5 = 5 \\ 5 {x}^{2}  = 0 \\  {x}^{2}  = 0 \\ x = 0

Alte întrebări interesante