Matematică, întrebare adresată de octavianfire, 8 ani în urmă

Determinați toate numerele naturale a b număr care au proprietatea că 9 supra a la a doua plus b la a doua reprezintă un număr natural ​


Semaka2: prin incercari a=0 ,b=3
Semaka2: a=3 b=0

Răspunsuri la întrebare

Răspuns de andyilye
4

Răspuns:

10; 30

Explicație pas cu pas:

a, b cifre în baza zece

\overline {ab}, a ≠ 0

 \frac{9}{ {a}^{2} + {b}^{2}} \in \mathbb{N} \implies {a}^{2} + {b}^{2}\in \{1;3;9\} \\

{a}^{2} + {b}^{2} = 1  \\ {a}^{2} \leqslant 1, a \not = 0 \implies a = 1 \\ 1 + {b}^{2} = 1 \iff {b}^{2} = 0 \: \implies b = 0 \\  \red{\bf \overline {ab} = 10}

{a}^{2} + {b}^{2} = 3 \\ {a}^{2} \leqslant 3, a \not = 0 \implies a = 1 \\ 1 + {b}^{2} = 3 \iff {b}^{2} = 2 \: \implies b\not \in \mathbb{N} \\ \implies nu  \: \: exista  \: \: a \: si  \: \: b

{a}^{2} + {b}^{2} = 9 \\ {a}^{2} \leqslant 9, a \not = 0 \implies a \in \{1;2;3\} \\a = 1 \iff 1 + {b}^{2} = 9 \iff {b}^{2} = 8 \implies b\not \in \mathbb{N} \\ a = 2 \iff 4 + {b}^{2} = 9 \iff {b}^{2} = 5 \implies b\not \in \mathbb{N} \\ a = 3 \iff 9 + {b}^{2} = 9 \iff {b}^{2} = 0 \implies b = 0 \\ \red{\bf \overline {ab} = 30}

Alte întrebări interesante