determinati ultima cifra a numarului n unde n=1+1+2+2^2+2^3+...+2^2004
Răspunsuri la întrebare
Răspuns de
5
n = 1 + 1 + 2 + 2^2 + 2^3 +... + 2^2004
Fie p = 1 + 2 + 2^2 + 2^3 +...+ 2^2003+2^2004
p = 2^0 + 2^1 + 2^2 + ...+ 2^2003 + 2^2004 |×2
2×p = 2^1 + 2^2 +2^3 +...+ 2^2004 + 2^2005
2×p - p = 2^2005 - 2^0
p = 2^2005 - 1
----------------------
n = 1 + p
n = 1 + 2^2005 - 1
n = 2^2005
U(2^2005) = U(2^4×501+1) = U(2^1) = 2
asadar,
U(n) = 2
------------
------
Fie p = 1 + 2 + 2^2 + 2^3 +...+ 2^2003+2^2004
p = 2^0 + 2^1 + 2^2 + ...+ 2^2003 + 2^2004 |×2
2×p = 2^1 + 2^2 +2^3 +...+ 2^2004 + 2^2005
2×p - p = 2^2005 - 2^0
p = 2^2005 - 1
----------------------
n = 1 + p
n = 1 + 2^2005 - 1
n = 2^2005
U(2^2005) = U(2^4×501+1) = U(2^1) = 2
asadar,
U(n) = 2
------------
------
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Biologie,
9 ani în urmă
Chimie,
9 ani în urmă