Matematică, întrebare adresată de Angheluşa, 9 ani în urmă

determinati valorile admisibile ale variabilelor \alpha si aduceti la forma ce mai simpla expresia :

(2^{log\sqrt[4]{2} ^{a}  } -3^{log27^{} {(a^{2} +1)^{3} } } } -2a):(7^{4log49^{a} } -a-1)

va-implooooor


Angheluşa: rezultatul-trebuie-sa-fie: a apartine R+* , a^2+a+1
Angheluşa: ma-ajuta-cineva?

Răspunsuri la întrebare

Răspuns de Rayzen
2

\text{Formule:}\\\\ a^{\log_{a}x} = x\\ \log_{a^x}b = \log_{a}b^{\frac{1}{x}}\\ \log_{a}b^x = \log_{a^{\frac{1}{x}}}b\\\\\\\left(2^{\log_{\sqrt[4]{2}}a}-3^{\log_{27}(a^2+1)^3} - 2a\right):\left(7^{4\log_{49}a}-a-1\right) = \\ \\ = \left(2^{\log_{2}a^4}-3^{\log_{3^3}(a^2+1)^3}-2a\right):\left(7^{\log_{7^2}a^{4}}-a-1\right) = \\ \\ =\left(a^4-3^{\log_{3}(a^2+1)}-2a\right):\left(7^{\log_{7}a^2}-a-1\right) = \\ \\ = \left(a^4-(a^2+1)-2a\right):(a^2-a-1)=

= \left(a^4-(a^2+2a+1)\right):\left(a^2-a-1\right) = \\ \\ = \left((a^2)^2-(a+1)^2\right):\left(a^2-a-1\right) =\\ \\ =\left(a^2-(a+1)\right)\left(a^2+a+1\right):\left(a^2-a-1\right) = \\ \\ = \left(a^2-a-1\right)\left(a^2+a+1\right):\left(a^2-a-1\right) =\\ \\ = a^2+a+1\\ \\ \\ \text{Valorile admisibile ale variabilei a sunt:}\\ a\in \mathbb{R}_+^*\,\text{ si }\,a^2-a-1 \neq 0.\\\\\Delta = 1+4 = 5 \Rightarrow a\neq \dfrac{1\pm \sqrt{5}}{2}

\Rightarrow a \in \mathbb{R}_+^*\,\backslash\,\left\{\dfrac{1+ \sqrt{5}}{2}\right\}\quad \text{(valorile admisibile)}


Angheluşa: dragule-iti-multumeeesc
Angheluşa: (≧ε≦)
Rayzen: Cu plăcere !
Scuze, ultimul exercițiu nu mai am timp să îl fac.
Trebuie să ies neapărat acum.
Angheluşa: maine-pana-la-8-poti-sa-il-faci?
Rayzen: Modificai, sa dai un refresh.
Acum e corect.
Rayzen: Cred că pot, o să încerc.
Angheluşa: te-rog
Angheluşa: pana-la-8-dimineata
Alte întrebări interesante