Matematică, întrebare adresată de Tozax, 9 ani în urmă

e la x + e la -x / 2 derivata si derivata a doua

Răspunsuri la întrebare

Răspuns de icecon2005
1

 \frac{d}{dx} [e^{x}+e^{-\frac{x}{2}}]=\frac{d}{dx}e^{x}+\frac{d}{dx}(e^{-\frac{x}{2}})\\    \\ \frac{d}{dx}e^{x}=e^{x} \\ \\ \frac{d}{dx}(e^{-\frac{x}{2}})=e^{-\frac{x}{2}} \frac{d}{dx}[-\frac{x}{2}]=(-\frac{1}{2}\frac{d}{dx}x) e^{-\frac{x}{2}}   \\ \\ \frac{d}{dx} [e^{x}+e^{-\frac{x}{2}}]=e^{x}-\frac{1}{2}e^{-\frac{x}{2}}

si acum derivata a doua:

 \frac{d}{dx}[e^{x}-\frac{1}{2}e^{-\frac{x}{2}}]=\frac{d}{dx}(e^{x})-\frac{1}{2}\frac{d}{dx}(e^{-\frac{x}{2}} )

 =e^{x}-\frac{e^{-\frac{x}{2}}\frac{d}{dx}(-\frac{x}{2})}{2}

 =e^{x}-\frac{-\frac{1}{2}\frac{d}{dx}(x)e^{-\frac{x}{2}}}{2}=

 =e^{x}+\frac{e^-{\frac{x}{2}}}{4} =e^{x} +\frac{e^{-\frac{x}{2}}}{4}

Răspuns de Utilizator anonim
2

 \it f'(x) = \left(e^x+e^{-\dfrac{x}{2}}\right)' = (e^x)' +\left(e^{-\dfrac{x}{2}}\right)' = e^x +\left(-\dfrac{x}{2}\right)' e^{-\dfrac{x}{2}} = <br />\\ \\ \\ <br />= e^x -\dfrac{1}{2}e^{-\dfrac{x}{2}}<br />\\ \\ \\ <br />f''(x) = \left(e^x -\dfrac{1}{2}e^{-\dfrac{x}{2}}\right)' = e^x-\dfrac{1}{2}\left(-\dfrac{x}{2}\right)'e^{-\dfrac{x}{2}}=  e^x+\dfrac{1}{4} e^{-\dfrac{x}{2}}

Alte întrebări interesante