Matematică, întrebare adresată de carmenserban, 9 ani în urmă

Ex 16 va rog multt!!!!dau coroana!! Vr si explicatie

Anexe:

Răspunsuri la întrebare

Răspuns de needhelp112
0
Gasesti atasat rezolvarea
Anexe:

carmenserban: ms mult
Răspuns de tcostel
1
   
[tex]\displaystyle\\ \left( \frac{7}{9}+\frac{77}{99}+\frac{777}{999} \right)^2 : \frac{7}{9}- \frac{111}{700}: \left( \frac{1}{7}+\frac{1}{70}+\frac{1}{700} \right)^n = 6\\\\\\ \left( \frac{7}{9}+\frac{77^{(11}}{99}+\frac{777^{(111}}{999} \right)^2 : \frac{7}{9}- \frac{111}{700}:\left(\frac{^{100)}1}{7}+\frac{^{10)}1}{70}+\frac{1}{700} \right)^n=6 [/tex]


[tex]\displaystyle\\ \left( \frac{7}{9}+\frac{7}{9}+\frac{7}{9} \right)^2 : \frac{7}{9}- \frac{111}{700}: \left( \frac{100}{700}+\frac{10}{700}+\frac{1}{700} \right)^n = 6\\\\\\ \left( \frac{3\times7}{9} \right)^2 : \frac{7}{9}- \left(\frac{111}{700}\right)^1 : \left( \frac{111}{700} \right)^n = 6\\\\\\ \left( \frac{7}{3} \right)^2 : \frac{7}{9}- \left(\frac{111}{700}\right)^{1-n} = 6\\\\\\ \frac{49}{9} : \frac{7}{9}-6= \left(\frac{111}{700}\right)^{1-n} [/tex]


[tex]\displaystyle\\ \left(\frac{111}{700}\right)^{1-n}= \frac{49}{9} \times \frac{9}{7}-6\\\\\\ \left(\frac{111}{700}\right)^{1-n}= 7-6\\\\\\ \left(\frac{111}{700}\right)^{1-n}= 1\\\\ \Longrightarrow~~ 1-n = 0\\\\ \Longrightarrow~~ \boxed{\bf n = 1} [/tex]




carmenserban: multumesc
tcostel: Cu placere !
Alte întrebări interesante