Matematică, întrebare adresată de Andreeab14, 8 ani în urmă

Ex ăsta vă rog….. vreau rezolvare completă………

Anexe:

Răspunsuri la întrebare

Răspuns de abcdebygabi
1

x^{3}+ax+1=0/*x \\x^{4}+ax^{2}+x=0 , < = > x^{4}=-ax^{2}-x\\

Astfel putem scrie urmatoarele ecuatii:

x_{1}^{4}=-ax_{1}^{2}-x_{1}\\x_{2}^{4}=-ax_{2}^{2}-x_{2}\\x_{3}^{4}=-ax_{3}^{2}-x_{3}

unde x1,x2,x3 sunt radacinile ecuatiei

Se aduna ecuatiile de mai sus si se obtine:

18=-a(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})-(x_{1}+x_{2}+x_{3})

Relatiile lui Viete:

x_{1}+x_{2}+x_{3}=0\\x_{1}x_{2}+x_{2}x_{3}+x_{1}x_{3}=a\\x_{1}x_{2}x_{3}=-1

x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=(x_{1}+x_{2}+x_{3})^{2}-2(x_{1}x_{2}+x_{2}x_{3}+x_{1}x_{3})=-2a\\

Evident daca "a" este pozitiv atunci nu pot fi toate radacinile reale.

Asa ca:

18=(-a)*(-2a)=2a^{2}\\9=a^{2}\\a=3 \;\;sau\;\;a=-3

Dar a<=0 => a=-3

Se poate pune intrebarea cum stim ca pentru a=-3 toate solutiile sunt reale? Se afla monotonia functie si se arata ca taie axa Ox de cel putin 3 ori(care este maximul).


Andreeab14: Mulțumesc!
Răspuns de targoviste44
2

\it x^3+ax+1=0 \Rightarrow x^3=-ax-1\Big|_{\cdot x} \Rightarrow x^4=-ax^2-x\ \ \ \ \ (1)\\ \\ \\ (1) \Rightarrow x_1^4+x_2^4+x_3^4=-a(x_1^2+x_2^2+x_3^2)-(x_1+x_2+x_3)

Formulele lui Viète implică:

\it x_1+x_2+x_3=0, \ \ deci:\ \ x_1^4+x_2^4+x_3^4=-a(x_1^2+x_2^2+x_3^2)\ \ \ \ \ (2)\\ \\ \\ x_1^2+x_2^2+x_3^2=(x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_3x_1)

Cu formulele lui Viète, vom avea:

\it x_1^2+x_2^2+x_3^2=0-2a=-2a\ \ \ \ \ (3)\\ \\ \\ (3)\ \Rightarrow a &lt; 0\ \ \ \ \ \ (4)\\ \\ (2),\ (3) \Rightarrow x_1^4+x_1^4+x_3^4=-a\cdot(-2a)=2a^2

Relația din enunț devine:

\it 2a^2=18\Big|_{:2} \Rightarrow a^2=9\ \stackrel{(4)}{\Longrightarrow} \ a=-3\\ \\ \\ R\breve a spuns\ corect\ C.\ \{-3\}


Andreeab14: Mulțumesc!
Alte întrebări interesante