Matematică, întrebare adresată de alexmaneatm, 8 ani în urmă

exercitiile 5 , 6 va rog !​

Anexe:

Răspunsuri la întrebare

Răspuns de neoclipcs
1

Răspuns:

5. Amplificam cu 2x-3, resp. 2x+3

( (2x-3)(x-2) + (2x+3)(x+2) ) / (4x^2-9) = 4

(2x^2 - 4x - 3x + 6 + 2x^2 + 4x + 3x + 6) / (4x^2-9) = 4

(4x^2 + 12) / (4x^2 - 9) = 4

4x^2 + 12 = 16x^2 - 36

12x^2 - 48 = 0

3(4x^2 - 16) = 0

3(2x-4)(2x+4) = 0

12(x-2)(x+2) = 0

a) x-2 = 0 => x = 2

b) x+2 = 0 => x = -2

6. Le iau de la dreapta la stanga.

rad(14-2rad(40)) =

= rad(14 - 4rad(10))

Este clar ca inauntrul radicalului se afla un binom, cu numerele a si b.

a^2+b^2 = 14

2ab = 4rad(10)

ab = 2rad(10)

Obtinem a = 2, b = rad(10)

rad((2 - rad(10))^2) =

= | 2 - rad(10) | , cu rad(10) > 3 =

= rad(10) - 2

(rad(10)+2)(rad(10)-2) =

= 10 - 4 = 6

6(x-1)^2 = 6 |:6

(x-1)^2 = 1

a) x-1 = 1 => x = 2

b) x-1 = -1 => x = 0

Le.am si verificat, da bine :)

Răspuns de norishor90
2

5.(x-2)/(2x+3)+(x+2)/(2x-3)=4

(x-2)/(2x+3)+(x+2)/(2x-3)-4=0

(2x-3)×(x-2)+(2x+3)×(x+2)-4(2x+3)×(2x-3) totul supra (2x+3)×(2x-3)=0

(2x-3)×(x-2)+(2x+3)×(x+2)-4(2x+3)×(2x-3)=0

2x²+6+2x²+6-16x²+36=0

-12x²+48=0

-12x²=-48

x²=4

x1=-2

x2=2

S={-2,2}

6.6(x-1)²=(2+rad10)×rad(14-2rad40)

6x²-12x+6=(rad10+2)×(rad10-2)

6x²-12x+6=10-4

6x²-12x+6=6

6x(x-2)=0

x(x-2)=0

x=0

x-2=0 => x-2+2=0+2 => x=0+2 => x=2

x1=0

x2=2

S={0,2}

Alte întrebări interesante