Exercitiile sunt:1+2+3+....+80; 1+3+5+....+99; 2+4+6+......+100; 3+7+11+15.....+43; 3+6+9+12......+2001;5+10+15+...2000; 4+8+12+....+2000; 7+14+21.......+2002. Va rog frumos ajutati-ma, dar faceti prin suma lui Gauss daca va amintiti. Va multumesc.
Răspunsuri la întrebare
Răspuns de
1
1+2+3+...+80= n(n+1)/2= 80 x 81/2= 3240
Aplici formula lui Gaus, n=80,n este ultima cifra.
Formula lui Gauss pentru sume de numere impare (suma incepe cu numarul 1): 1 + 3 + 5 + 7 + … + ( 2n – 1 ) = n x n
3+6+9+....2001= 3(1+ 2+ 3+....+ 667) = si aplici formula de la primul supunct adica
=> 3( 667 x 668)/2= ....
Aplici formula lui Gaus, n=80,n este ultima cifra.
Formula lui Gauss pentru sume de numere impare (suma incepe cu numarul 1): 1 + 3 + 5 + 7 + … + ( 2n – 1 ) = n x n
3+6+9+....2001= 3(1+ 2+ 3+....+ 667) = si aplici formula de la primul supunct adica
=> 3( 667 x 668)/2= ....
arotariteieman:
Iti multumesc din suflet!!!!☺
Alte întrebări interesante
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Fizică,
9 ani în urmă