Exercitiul 17 va rog

Răspunsuri la întrebare
Scri numaratorul si numitorul sub forma trigonometrica
z1=1-i
lz1l=√[1²+(-1)²]=√2
cosα=1/√2=√2/2
sinα=-1/√2=-√2/2
sinusul negativ, cosinusul pozitiv, esti in cadran 4
α=2π-π/4=7π/4
z1=√2(cos7π/4+isin7π/4)
z2=√3+i
lz2l=√(√3²+1²)=√4=2
cosα=√3/2
sinα=1/2
Esti in cadranul 1
α=π/4
z2=2*(cosπ/4+isinπ/4)
z1/z2=√2*(cos7π/4+isin 7π/4)/2*(cosπ/4+isinπ/4)=
√2/2[cos(7π/4-π/4)+isin(7π/4-π/4)]/(cosπ/4+isinπ/4)=
√2/2*[cos(7π/4-π/4)+isin(7π/4-π/4)]=
1/√2*[cos6π/4+i sin6π/4)]=1/√2(cos3π/2+isin3π/2)
z=z1/z2
radacina de ordinul 6 din z=
(1/√2)^1/6*[cos(3π/2+2kπ)/6+isin(3π/2+2kπ)/6 k=1,2,...,5
k=1
⁶√z=1/(√2)^1/6[cos(3π/12+π/3)+isin(3π/12+π/3)]=
=1/2^1/12*[cosπ/4+π/3)+isin(π/4+π/3)]=
1/2^1/12*(cos 7π/12+isin 7π/12)
Continui tu pt k=2 k=3, k=4(inlocuiesti pe k cu numerele de mai sus si faci calculele
k=5
⁶√z=1/2^1/12*(cos( 3π/2+2*5π)/6+isin(3π/2+2*5π)/6=
1/√2^1/12*(cos 3π/12+10π/6)+isin(3π/12+10π/6)=
1/√2^1/12*cos(3π+20π)/12+isin(3π+20π)/12=
1/√2^1/12*cos23π/12+isiπn23π/12