Exercitiul 24 va implor ... poza va rog ... va multumesc )
Răspunsuri la întrebare
Observi mai intai ca B(1,6) este punct de maxim.=>
-b/2a=6
Faci sistem
{f(-2)=4a-2b+c=0
{f(1)=a+b+c=6
{-b/2a=1=>-b=2a b=-2a
SCazi Relatia 2 din 1
4a-2b+c-a-b-c=-6
3a-3b=-6
a-b= -2=>
a=b-2 Dar b=-2a relatia devine
a=-2a-2
3a= -2
a= -2/3=>
-2/3-b=-2
-b= -2+2/3
-b=-4/3
b=4/3Inlocuiesti valorile in ecuatia 2
-2/3+4/3+c=6
2/3+c=6
c=6-2/3=16/3
Ecuatia devine
-2x²/3+4x/3+16/3=0
Inmultesti egalitatea cu 3 si obtii
-2x²+4x+16=0 Simplifici prin 2
-x²+2x+8=0
Ai obtinut functia de gradul 2
f(x)= -x²+2x+8
Intersectia cu Ox Rezolvi ecuatia f(x)=0
x1=-2
x2=4
Punctele de intersectie cu axa Ox sunt
A(-2,0) C(4,0
Intersectia cu Oy
f(0)=8
D(0,8)
f:R->R; f(x)=ax²+bx+c; a,b,c ∈R, a≠0
A(-2, 0) ∈Gf => f(-2)=0
B(1, 6)∈Gf => f(1)=6
functia are maxim => a<0
-Δ/4a=6 => -b²+4ac=24a; b²=4ac-24a
4a-2b+c=0
a+b+c=6 (-)
3a-3b=-6
a-b=-2
b=a+2
b²=a²+4a+4
a²+4a+4=4ac-24a
c=(a²+4a+4+24a)/4a
c=(a²+28a+4)/4a
a+b+c=6, inlocuim pe b si c
a+ a+2 +(a²+28a+4)/4a=6 ·4a
8a²+8a+a²+28a+4=24a
9a²+12a+4=0
(3a+2)²=0
a=-2/3
b=a+2=-2/3+2
b=4/3
c=6-(a+b)=6-(-2/3+4/3)=6-2/3
c=16/3
f(x)=-2x²/3+4x/3+16/3