Matematică, întrebare adresată de andreeamaria4823, 8 ani în urmă

Exercițiul 4 va rog!!

Anexe:

Răspunsuri la întrebare

Răspuns de mbc220861
1

Răspuns:

varianta d)

Explicație pas cu pas:

∡CAB=30°  CD⊥AB    CD=6√3 cm.  AΔABC=?

In Δ ACD cu D=90°, cateta care se opune unghiului de 30° este jumatate din ipotenuza.   CD=6√3  ⇒AC=2·CD=2·6√3=12√3 cm.

Se aplica teorema lui Pitagora pentru Δ ACD: AC²=AD²+CD²  

⇒AD²=AC²-CD²=(12√3)²-(6√3)²=144·3-36·3=432-108=324  

⇒√AD=√324=√18²=18 cm. AD=18 cm.

Se aplica teorema inaltimii in Δ ABC: CD²=AD·DB  

⇒DB=CD²/AD=(6√3)²/18=36·3/18=6 cm.  DB=6 cm.

Aria Δ ABC=AB·CD/2=(AD+DB)·CD/2=(18+6)·6√3/2=24·6√3/2=

24·3√3=72√3 cm²

Aria Δ ABC=72√3 cm²  Raspuns: varianta d)

Răspuns de exprog
0

Răspuns:

Explicație pas cu pas:

Tr.ABC = dreptunghic ca inscrs in semicerc

sinA = CD/AC

sin30 = 1/2 = 6√3/AC,  AC = 12√3

<B = 60

sinB = AC/AB

sin60 = √3/2 = 12√3/AB,  Ab = 24

AriaABC = AB*CD/2 = 24*6√3/2 = 72√3

Alte întrebări interesante