Exercitiul A1 doar c si d
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
Răspuns:
Vom demonstra folosind inductia matematica.
c) 1·2·3+3·4·5+...+(2n-1)2n(2n+1)=n(n+1)(2n^2+2n-1)
1) Verificarea: P(1) = 1*2*3 = 1(1+1)(2*1²+2*1-1) => 6=6 (adevarat)
2) Demonstratia
P(k):1·2·3+3·4·5+...+(2k-1)2k(2k+1)=k(k+1)(2k^2+2k-1)
P(k+1):1·2·3+3·4·5+...+(2k-1)2k(2k+1)+(2k+1)(2k+2)(2k+3)=(k+1)(k+2)[2(k+1)^2+2(k+1)-1] <=>
<=> 1·2·3+3·4·5+...+(2k-1)2k(2k+1)+(2k+1)(2k+2)(2k+3)=(k+1)(k+2)(2k^2+6k+3)
P(k)+k+1 = k(k+1)(2k^2+2k-1)+(2k+1)(2k+2)(2k+3) =
k(k+1)(2k^2+2k-1)+(2k+1)(2k+2)(2k+3)=
k(k+1)(2k^2+2k-1)+(2k+1)2(k+1)(2k+3)=
(k+1)(2k^3+2k^2-k+8k^2+12k+4k+6)=
(k+1)(2k^3+10k^2+15k+6)=
(k+1)(k+2)(2k^2+6k+3)
d) 1*2^2+2*3^2+...+(n-1)n^2=
2) Demonstratia (Am trecut direct la demonstratie de data asta, dar in test pasul 1, adica verificarea este obligatorie, dar deja sti asta asa ca facem demonstratia)
P(k) = 1*2^2+2*3^2+...+(k-1)k^2=
P(k+1) = 1*2^2+2*3^2+...+(k-1)k^2+k(k+1)^2 =
= = (Am facut pe calculator calculele fara sa mai dau factor comun)
P(k)+k+1 = + k(k+1)^2 = (Am facut pe calculator calculele fara sa mai dau factor comun)
Explicație pas cu pas: