Matematică, întrebare adresată de cherrygirl, 9 ani în urmă

Fie ABC triunghi dreptunghic in A si [BD] - bisectoare unghiului B (D apartine AC). Stiind ca CD =5 cm AD =4 cm, determinati lungimile laturilor triunghiului.

Răspunsuri la întrebare

Răspuns de emanuela3456
2
Folosim teorema bisectoarei. cum BD bis unghiului ABC => ad supra cd= ab supra bc => 4 supra 5= ab supra bc  => 4bc= 5bc. Sigur nu mai erau si alte date in aceasta problema? Daca nu, acesta este rezultatul.


cherrygirl: Merci mult
emanuela3456: scuze. 4 bc supra 5 ab este rezultatul
cherrygirl: ok
Răspuns de Utilizator anonim
6
Desenam triunghiul si ducem bisectoarea BD.

Fixam CD=5, AD=4 si, evident AC=9.

Din teorema bisectoarei , rezulta:

DC/DA=BC/AB ⇒ 5/4=BC/AB ⇒ (5/4)² = (BC/AB)² ⇒ 25/16 = BC²/AB² 

Derivam ultima proportie:

(25-16)/16 = (BC²-AB²)/AB²    (1)

Stim din teorema lui Pitagora ca: BC²-AB² =AC² =9²=81    (2)

(1), (2) ⇒ 9/16 = 81/AB² ⇒ AB² = (81 · 16)/9 ⇒ AB² =9·16 ⇒ 

⇒ AB = 3·4 ⇒ AB = 12 cm

Cu teorema lui Pitagora aflam   BC² =12² + 9² =225 ⇒ BC = 15 cm
Alte întrebări interesante