Fie ABCD un romb in care unghiul BAC=20grade. Determinați masurile unghiurilor rombului.
Răspunsuri la întrebare
Răspuns de
8
Explicație pas cu pas:
In romb diagonalele sunt bisectoare.
Ac-diagonala => AC-bisectoarea unghiului BAD => m(<DAC)=m(<BAC)=20° (1)
m(<DAC)+m(<BAC)=m(<BAD) (2)
din 1 si 2 => m(<BAD)=40°
In romb unghiurile opuse sunt congruente
<BAD opus cu <BCD => m(<BAD)=m(<BCD)=40°
deci m(<BAD)+m(<BCD)=80° (1)
de asemenea m(<BAD)+m(<ADC)+m(<DCB)+m(<ABC)=360° (2)
din 1 si 2 rezulta m(<ADC)+m(<ABC)+80°=360°
m(<ADC)+m(<ABC)=280°
Si acestea sunt opuse, deci congruente ceea ce inseamna ca fiecare are 140°
AVEM:
BAD=40
BCD=40
ADC=140
ABC=140
P.S.: am folosit semnul "<" in locul semnului de "unghiu"
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Engleza,
8 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă