Matematică, întrebare adresată de Mann667, 9 ani în urmă

Fie N mijlocul muchie [D’C’] in cubul ABCDA’B’C’D’ dacă aria triunghiului NAB este de 8 radical din 2 , Calculați
a) aria totala și volumul cubului
b) aria triunghiului ANC

Răspunsuri la întrebare

Răspuns de albatran
1

Răspuns:

Explicație pas cu pas:

Fie AB=a

fie M∈AB, [AM]≡[MB]

⇒MN=(Pitagora)=√(a²+a²)=a√2

Observam ( T3p) ca MN⊥AB

atunci AΔANB=AB*MN/2==a*a√2/2=a²√2/2

a²√2/2=8√2 (ipoteza)

a²=16

a>0, a=4

ria total =6*4²=6*16=96cm²

V=4³=64cm³

b) cam grea

vezi atasament

dar

duci NP⊥(ABC) care va cadea pe CD, dreapta de intersectie ( pt ca N∈(DCC'D'), ⊥(ABC) )

duci PR⊥AC, R∈AC

cu T3p ⇒NR⊥AC, deci NR este inaltimea ΔANC

si api afl;ui aria triunghiyului ANC cu formula cl;asica

baza * inaltimea/2

Anexe:

albatran: de la mediu in sus!
Alte întrebări interesante