Fie numerele x=2011+2(1+2+3+...+2010) si y=1+3+5+...+2011
a) Sa se arate ca sunt patrate perfecte
b) Sa se arate ca 2011+x<4*y
P.S. *=inmultit
Răspunsuri la întrebare
Răspuns de
2
1+2+3+...+2010 =
2010*2011 / 2
x= 2011+2* 2010*2011/2 2 cu 2 se simplifica si ramane
x=2011+2010*2011
x=2011(1+2010*1)
x=2011*2011 => patrat perfect
y=1+3+5+...+2011
Exista o formula
1+3+5+..+2n-1=n*n
2n-n=2011
2n=2012
n=1006
atunci 1+3+5+...+2011 = 1006*1006 => numarul e patrat perfect
2011+x<4*y
2011+2011*2011<4*1006*1006 Facem babeste
4046132< 4048144 Adevarat
2010*2011 / 2
x= 2011+2* 2010*2011/2 2 cu 2 se simplifica si ramane
x=2011+2010*2011
x=2011(1+2010*1)
x=2011*2011 => patrat perfect
y=1+3+5+...+2011
Exista o formula
1+3+5+..+2n-1=n*n
2n-n=2011
2n=2012
n=1006
atunci 1+3+5+...+2011 = 1006*1006 => numarul e patrat perfect
2011+x<4*y
2011+2011*2011<4*1006*1006 Facem babeste
4046132< 4048144 Adevarat
ctinamaria31:
e acelasi lucru :)
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Evaluare Națională: Lb. Română ,
8 ani în urmă
Matematică,
9 ani în urmă
Biologie,
9 ani în urmă
Limba română,
9 ani în urmă
Fizică,
9 ani în urmă