Fie , ∀n≥1, a(n), b(n)∈ Q. Sa se calculeze . Mersi
Răspunsuri la întrebare
Salut,
[tex](1+\sqrt3)^n=a_n+\sqrt3\cdot b_n\ (1)\Rightarrow\\\\\Rightarrow(1-\sqrt3)^n=a_n-\sqrt3\cdot b_n\ (2),\ vezi\;binomul\;lui\;Newton.\\\\Din\ (1)+(2)\;avem\;c\breve{a}:\ a_n=\dfrac{1}2\cdot\left[\left(1+\sqrt3\right)^n+\left(1-\sqrt3\right)^n\right].\\\\Din\ (1)-(2)\;avem\;c\breve{a}:\ b_n=\dfrac{1}{2\sqrt3}\cdot\left[\left(1+\sqrt3\right)^n-\left(1-\sqrt3\right)^n\right].\\\\\dfrac{a_n}{b_n}=\sqrt3\cdot\dfrac{\left(1+\sqrt3\right)^n+\left(1-\sqrt3\right)^n}{\left(1+\sqrt3\right)^n-\left(1-\sqrt3\right)^n}=\sqrt3\cdot\dfrac{1+\left(\dfrac{1-\sqrt3}{1+\sqrt3}\right)^n}{1-\left(\dfrac{1-\sqrt3}{1+\sqrt3}\right)^n}.\\\\\\\dfrac{1-\sqrt3}{1+\sqrt3}=\dfrac{\left(1-\sqrt3\right)^2}{(1-\sqrt3)\cdot(1+\sqrt3)}=\dfrac{4-2\sqrt3}{1-3}=\sqrt3-2.[/tex]
Apoi:
Green eyes.