Fie z1,z2 solutiile ecuatiei z^2 +z+1=0 ,iar z3 si z4 solutiile ecuatiei z^2-z+1=0.
●a) Sa se determine multimea {z1^n +z2^n | n € N}
●●b) Sa se determine multimea { z3^n + z4^n | n€ N }
●●●c) Sa se determine n € N pentru care z1^n + z2^n =z3^n +z4^n
Răspunsuri la întrebare
Răspuns de
4
z² + z + 1 = 0 cu solutii z₁ ; z₂ ≠ 1
z² + z + 1 = 0 inmultim cu ( z -1)
( z -1)· ( z² + z +1) =0
z³ - 1 = 0 atunci z³ =1
daca n = 3k , multiplu de 3 z₁· ( la n) + z₂· ( la n) = 1 + 1 = 2
daca n = 3k + 1 z₁ ·( la 3k + 1) + z₂· ( la 3k +1) =
= z₁·( la 3k ) z₁¹ + z₂·( la 3k ) z₂¹ = z₁ +z₂ = - 1 / 1 = -1
= 1 = 1
daca n = 3k + 2 z₁· ( 3k + 2) + z₂· ( 3k + 2) =
z₁ ( la 3k )· z₁² + z₂( la 3k)·z₂² = z₁² + z₂² = -1 -2z₁z₂=
= - 1 - 2 = - 3
b. z² - z + 1 = 0 cu solutii z₁ , z₂ ≠ - 1
z² -z + 1 = 0 inmultim cu ( z + 1)
( z + 1)· ( z² - z + 1) = 0 ⇒ z³ + 1 = 0 ; z³ = - 1
daca n =3k atunci z₁ ( la 3k) + z₂( la 3k ) = -1 -1 = - 2
daca n =3k +1 z₁ ( la 3k +1) + z₂( la 3k +1) =
=z₁( la 3k) z₁¹ + z₂( la 3k ) z₂¹ =- z₁ - z₂ =- [ - ( -1) /1] =- 1
= - 1 - 1
daca n =3k + 2 z₁( la 3k + 2) +z₂( la 3k +2) =
= z₁( la 3k) z₁² + z₂( la 3k ) z₂² = - z₁² - z₂² = -1 +2z₁z₂ = -1 + 2 =1
= - 1 = - 1
c. daca n = 3k + 1
z² + z + 1 = 0 inmultim cu ( z -1)
( z -1)· ( z² + z +1) =0
z³ - 1 = 0 atunci z³ =1
daca n = 3k , multiplu de 3 z₁· ( la n) + z₂· ( la n) = 1 + 1 = 2
daca n = 3k + 1 z₁ ·( la 3k + 1) + z₂· ( la 3k +1) =
= z₁·( la 3k ) z₁¹ + z₂·( la 3k ) z₂¹ = z₁ +z₂ = - 1 / 1 = -1
= 1 = 1
daca n = 3k + 2 z₁· ( 3k + 2) + z₂· ( 3k + 2) =
z₁ ( la 3k )· z₁² + z₂( la 3k)·z₂² = z₁² + z₂² = -1 -2z₁z₂=
= - 1 - 2 = - 3
b. z² - z + 1 = 0 cu solutii z₁ , z₂ ≠ - 1
z² -z + 1 = 0 inmultim cu ( z + 1)
( z + 1)· ( z² - z + 1) = 0 ⇒ z³ + 1 = 0 ; z³ = - 1
daca n =3k atunci z₁ ( la 3k) + z₂( la 3k ) = -1 -1 = - 2
daca n =3k +1 z₁ ( la 3k +1) + z₂( la 3k +1) =
=z₁( la 3k) z₁¹ + z₂( la 3k ) z₂¹ =- z₁ - z₂ =- [ - ( -1) /1] =- 1
= - 1 - 1
daca n =3k + 2 z₁( la 3k + 2) +z₂( la 3k +2) =
= z₁( la 3k) z₁² + z₂( la 3k ) z₂² = - z₁² - z₂² = -1 +2z₁z₂ = -1 + 2 =1
= - 1 = - 1
c. daca n = 3k + 1
getatotan:
acestea sunt ex. teorectice = se numesc radacinile unitatii de ord. trei
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
9 ani în urmă
Engleza,
9 ani în urmă
Biologie,
9 ani în urmă