Figura 2 reprezinta schita unui teren in forma de trapez isoscel ABCD cu AB||CD, AD=DC=BC=12 m si m(ABC)=60. Punctul E este piciorul perdpendicularei din C pe dreapta AB, O este punctul de intersectie a diagonalelor trapezului ABCD, iar M este punctul de intersectie a dreptelor AD si BC.
a) EB=6m
b) Aria triunghiului AMB.
c) Punctul N este mijlocul laturii CD. Demonstrati ca punctele M,N, O sunt perpendiculare
Utilizator anonim:
c) M N O coliniare poate ?
Răspunsuri la întrebare
Răspuns de
5
Răspuns:
a)
In Δ CBE avem ∡B = 60° => ∡BCE = 30°
Cnf T30° => EB = BC/2 = 12m/2 = 6m
b)
AB = CD + 2EB = 12m + 12m = 24 m
CD || AB =>
MD/MA = CD/AB
MD/(MD+AD) = 12/24
24MD = 12MD + 12×12
24MD - 12MD = 12×12
12MD = 12×12
MD = 12 m
MA = AD+MD = 12m + 12m = 24 m
MA = MB = 24
cum AB = 24 } => ΔAMB = echilateral
A(AMB) = L²√3/4 = AB²√3/4 = 24²√3/4 = 6×24√3 = 144√3 m²
c)
MD = MC
CN = ND } => MN ⊥ CD (1)
CO = OD
CN = ND } => ON ⊥ CD (2)
din (1) si (2) => M ; N ; O coliniare
Anexe:
Alte întrebări interesante
Biologie,
8 ani în urmă
Matematică,
8 ani în urmă
Istorie,
8 ani în urmă
Istorie,
8 ani în urmă
Franceza,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă