Matematică, întrebare adresată de 66666fywe, 9 ani în urmă

Help!!!!!Dau funda si multe puncte!!!!!!!!!
Solutiile reale ale ecuatiei x² -√12=√(2√3-4)²sunt egale cu....


Trombolistul: Radical mare la √(2√3-4)²?
66666fywe: da

Răspunsuri la întrebare

Răspuns de maverickarcher
3

x² -2√3 = -(2√3-4) x² -2√3 = 4-2√3 x² = 4 x = +/ - 2 Solutiile reale ale ecuatiei sunt x1 = 2 si x2 = -2 La √(2√3-4)² ramane modul, deoarece avem expresia de sub radical ridicata la patrat.  Observam ca expresia din modul este negativa, deci vom scrie -(2√3-4).


66666fywe: iti multumesc!!!!!!!
Răspuns de Trombolistul
1

 {x}^{2} -  \sqrt{12} =  \sqrt{(2 \sqrt{3} - 4) ^{2}  } \\  \\  \sqrt{(2 \sqrt{3} - 4) ^{2}  } =  |2 \sqrt{3} - 4 | =  - (2 \sqrt{3} - 4) = 4 - 2 \sqrt{3} \\  \\  {x}^{2} - 2 \sqrt{3} = 4 - 2 \sqrt{3} \\  \\  {x}^{2} = 4 \\  \\  =  > x = 2 \\  \\ x =  - 2

66666fywe: iti multumesc
Trombolistul: Cu drag!
Alte întrebări interesante