In figura 1 este reprezentat un paralelipiped dreptunghic ABCDA'B'C'D' ,cu AB=4cm ,BC=3cm si AA'= 12cm.Lungimea diagonalei AC' este egala cu ... cm?
Figura arata ca un cub.
Răspunsuri la întrebare
Răspuns de
21
A) Se foloseste teorema lui Pitagora in spatiud² = a² + b² + c² = 4²+3²+5² = 16+9+25 = 50 ⇒ d = √50 =√(25·2) =5√2b)
Se determina D'A cu th. Pitagora in ΔA'AD .D'B = o diagonala a paralelipipedului ⇒ D'B = 5√2Cu reciproca Th. Pitagora se arata ca Δ D'AB este dreptunghic in A.
Se duce AF ⊥ D'B, cu F pe D'B. In Δ ABD'- dreptunghic, proiectia catetei AB pe ipotenuza D'A este FB.
Se determina FB = (AB·AD')/D'B, apoi cu Th. Pitagora in ΔFAB se poateafla FB.
Se determina D'A cu th. Pitagora in ΔA'AD .D'B = o diagonala a paralelipipedului ⇒ D'B = 5√2Cu reciproca Th. Pitagora se arata ca Δ D'AB este dreptunghic in A.
Se duce AF ⊥ D'B, cu F pe D'B. In Δ ABD'- dreptunghic, proiectia catetei AB pe ipotenuza D'A este FB.
Se determina FB = (AB·AD')/D'B, apoi cu Th. Pitagora in ΔFAB se poateafla FB.
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Engleza,
9 ani în urmă