In triunghiul ABC bisectoarea imparte latura BC in doua segmente raportul lungimilor carora este 2:3. Sa se afle lungimile laturilor care formeaza unghiul A stind ca suma lungimilor lor este egala cu 38.
albastruverde12:
Indicatie: Din teorema bisectoarei: c/b=2/3, iar b+c=38.
Răspunsuri la întrebare
Răspuns de
10
Desenăm triunghiul oarecare ABC și ducem bisectoarea AF, cu F pe BC.
Din teorema bisectoarei, rezultă:
[tex]\it \dfrac{AB}{AC} = \dfrac{FB}{FC} \ \ \ \ \ \ \ (1) \\\;\\ \\\;\\ Dar,\ \dfrac{FB}{FC} = \dfrac{2}{3} \ \ \ \ \ (2)[/tex]
[tex]\it (1),\ (2) \Rightarrow \dfrac{AB}{AC} = \dfrac{2}{3} \Rightarrow \dfrac{AB}{2} = \dfrac{AC}{3} = \dfrac{AB+AC}{2+3} = \dfrac{38}{5} \\\;\\ \\\;\\ \dfrac{AB}{2} =\dfrac{38}{5} \Rightarrow AB = \dfrac{2\cdot38}{5} = \dfrac{^{2)}76}{\ 5} = \dfrac{152}{10} = 15,2 \ cm \\\;\\ \\\;\\ AC = 38 - 15,2 [/tex]
Din teorema bisectoarei, rezultă:
[tex]\it \dfrac{AB}{AC} = \dfrac{FB}{FC} \ \ \ \ \ \ \ (1) \\\;\\ \\\;\\ Dar,\ \dfrac{FB}{FC} = \dfrac{2}{3} \ \ \ \ \ (2)[/tex]
[tex]\it (1),\ (2) \Rightarrow \dfrac{AB}{AC} = \dfrac{2}{3} \Rightarrow \dfrac{AB}{2} = \dfrac{AC}{3} = \dfrac{AB+AC}{2+3} = \dfrac{38}{5} \\\;\\ \\\;\\ \dfrac{AB}{2} =\dfrac{38}{5} \Rightarrow AB = \dfrac{2\cdot38}{5} = \dfrac{^{2)}76}{\ 5} = \dfrac{152}{10} = 15,2 \ cm \\\;\\ \\\;\\ AC = 38 - 15,2 [/tex]
Răspuns de
6
foto
----------------------------------
----------------------------------
Anexe:
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă